LCOV - code coverage report
Current view: top level - json/detail/ryu/impl - d2s.ipp (source / functions) Coverage Total Hit
Test: coverage_filtered.info Lines: 99.6 % 225 224
Test Date: 2025-12-23 17:20:51 Functions: 100.0 % 7 7

            Line data    Source code
       1              : // Copyright 2018 Ulf Adams
       2              : //
       3              : // The contents of this file may be used under the terms of the Apache License,
       4              : // Version 2.0.
       5              : //
       6              : //    (See accompanying file LICENSE-Apache or copy at
       7              : //     http://www.apache.org/licenses/LICENSE-2.0)
       8              : //
       9              : // Alternatively, the contents of this file may be used under the terms of
      10              : // the Boost Software License, Version 1.0.
      11              : //    (See accompanying file LICENSE-Boost or copy at
      12              : //     https://www.boost.org/LICENSE_1_0.txt)
      13              : //
      14              : // Unless required by applicable law or agreed to in writing, this software
      15              : // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
      16              : // KIND, either express or implied.
      17              : 
      18              : // Runtime compiler options:
      19              : // -DRYU_DEBUG Generate verbose debugging output to stdout.
      20              : //
      21              : // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
      22              : //     depending on your compiler.
      23              : //
      24              : // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
      25              : //     required power of 5, only store every 26th entry, and compute
      26              : //     intermediate values with a multiplication. This reduces the lookup table
      27              : //     size by about 10x (only one case, and only double) at the cost of some
      28              : //     performance. Currently requires MSVC intrinsics.
      29              : 
      30              : /*
      31              :     This is a derivative work
      32              : */
      33              : 
      34              : #ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
      35              : #define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
      36              : 
      37              : #include <boost/json/detail/ryu/ryu.hpp>
      38              : #include <cstdlib>
      39              : #include <cstring>
      40              : 
      41              : #ifdef RYU_DEBUG
      42              : #include <stdio.h>
      43              : #endif
      44              : 
      45              : // ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
      46              : // Let's do the same for now.
      47              : #if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
      48              : #define BOOST_JSON_RYU_HAS_UINT128
      49              : #elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
      50              : #define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
      51              : #endif
      52              : 
      53              : #include <boost/json/detail/ryu/detail/common.hpp>
      54              : #include <boost/json/detail/ryu/detail/digit_table.hpp>
      55              : #include <boost/json/detail/ryu/detail/d2s.hpp>
      56              : #include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp>
      57              : 
      58              : namespace boost {
      59              : namespace json {
      60              : namespace detail {
      61              : 
      62              : namespace ryu {
      63              : namespace detail {
      64              : 
      65              : // We need a 64x128-bit multiplication and a subsequent 128-bit shift.
      66              : // Multiplication:
      67              : //   The 64-bit factor is variable and passed in, the 128-bit factor comes
      68              : //   from a lookup table. We know that the 64-bit factor only has 55
      69              : //   significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
      70              : //   factor only has 124 significant bits (i.e., the 4 topmost bits are
      71              : //   zeros).
      72              : // Shift:
      73              : //   In principle, the multiplication result requires 55 + 124 = 179 bits to
      74              : //   represent. However, we then shift this value to the right by j, which is
      75              : //   at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
      76              : //   bits. This means that we only need the topmost 64 significant bits of
      77              : //   the 64x128-bit multiplication.
      78              : //
      79              : // There are several ways to do this:
      80              : // 1. Best case: the compiler exposes a 128-bit type.
      81              : //    We perform two 64x64-bit multiplications, add the higher 64 bits of the
      82              : //    lower result to the higher result, and shift by j - 64 bits.
      83              : //
      84              : //    We explicitly cast from 64-bit to 128-bit, so the compiler can tell
      85              : //    that these are only 64-bit inputs, and can map these to the best
      86              : //    possible sequence of assembly instructions.
      87              : //    x64 machines happen to have matching assembly instructions for
      88              : //    64x64-bit multiplications and 128-bit shifts.
      89              : //
      90              : // 2. Second best case: the compiler exposes intrinsics for the x64 assembly
      91              : //    instructions mentioned in 1.
      92              : //
      93              : // 3. We only have 64x64 bit instructions that return the lower 64 bits of
      94              : //    the result, i.e., we have to use plain C.
      95              : //    Our inputs are less than the full width, so we have three options:
      96              : //    a. Ignore this fact and just implement the intrinsics manually.
      97              : //    b. Split both into 31-bit pieces, which guarantees no internal overflow,
      98              : //       but requires extra work upfront (unless we change the lookup table).
      99              : //    c. Split only the first factor into 31-bit pieces, which also guarantees
     100              : //       no internal overflow, but requires extra work since the intermediate
     101              : //       results are not perfectly aligned.
     102              : #if defined(BOOST_JSON_RYU_HAS_UINT128)
     103              : 
     104              : // Best case: use 128-bit type.
     105              : inline
     106              : std::uint64_t
     107          786 :     mulShift(
     108              :     const std::uint64_t m,
     109              :     const std::uint64_t* const mul,
     110              :     const std::int32_t j) noexcept
     111              : {
     112          786 :     const uint128_t b0 = ((uint128_t) m) * mul[0];
     113          786 :     const uint128_t b2 = ((uint128_t) m) * mul[1];
     114          786 :     return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64));
     115              : }
     116              : 
     117              : inline
     118              : uint64_t
     119          262 : mulShiftAll(
     120              :     const std::uint64_t m,
     121              :     const std::uint64_t* const mul,
     122              :     std::int32_t const j,
     123              :     std::uint64_t* const vp,
     124              :     std::uint64_t* const vm,
     125              :     const std::uint32_t mmShift) noexcept
     126              : {
     127              : //  m <<= 2;
     128              : //  uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
     129              : //  uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
     130              : //
     131              : //  uint128_t hi = (b0 >> 64) + b2;
     132              : //  uint128_t lo = b0 & 0xffffffffffffffffull;
     133              : //  uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
     134              : //  uint128_t vpLo = lo + (factor << 1);
     135              : //  *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
     136              : //  uint128_t vmLo = lo - (factor << mmShift);
     137              : //  *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
     138              : //  return (std::uint64_t) (hi >> (j - 64));
     139          262 :     *vp = mulShift(4 * m + 2, mul, j);
     140          262 :     *vm = mulShift(4 * m - 1 - mmShift, mul, j);
     141          262 :     return mulShift(4 * m, mul, j);
     142              : }
     143              : 
     144              : #elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
     145              : 
     146              : inline
     147              : std::uint64_t
     148              : mulShift(
     149              :     const std::uint64_t m,
     150              :     const std::uint64_t* const mul,
     151              :     const std::int32_t j) noexcept
     152              : {
     153              :     // m is maximum 55 bits
     154              :     std::uint64_t high1;                                   // 128
     155              :     std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64
     156              :     std::uint64_t high0;                                   // 64
     157              :     umul128(m, mul[0], &high0);                            // 0
     158              :     std::uint64_t const sum = high0 + low1;
     159              :     if (sum < high0)
     160              :         ++high1; // overflow into high1
     161              :     return shiftright128(sum, high1, j - 64);
     162              : }
     163              : 
     164              : inline
     165              : std::uint64_t
     166              : mulShiftAll(
     167              :     const std::uint64_t m,
     168              :     const std::uint64_t* const mul,
     169              :     const std::int32_t j,
     170              :     std::uint64_t* const vp,
     171              :     std::uint64_t* const vm,
     172              :     const std::uint32_t mmShift) noexcept
     173              : {
     174              :     *vp = mulShift(4 * m + 2, mul, j);
     175              :     *vm = mulShift(4 * m - 1 - mmShift, mul, j);
     176              :     return mulShift(4 * m, mul, j);
     177              : }
     178              : 
     179              : #else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
     180              : 
     181              : inline
     182              : std::uint64_t
     183              : mulShiftAll(
     184              :     std::uint64_t m,
     185              :     const std::uint64_t* const mul,
     186              :     const std::int32_t j,
     187              :     std::uint64_t* const vp,
     188              :     std::uint64_t* const vm,
     189              :     const std::uint32_t mmShift)
     190              : {
     191              :     m <<= 1;
     192              :     // m is maximum 55 bits
     193              :     std::uint64_t tmp;
     194              :     std::uint64_t const lo = umul128(m, mul[0], &tmp);
     195              :     std::uint64_t hi;
     196              :     std::uint64_t const mid = tmp + umul128(m, mul[1], &hi);
     197              :     hi += mid < tmp; // overflow into hi
     198              : 
     199              :     const std::uint64_t lo2 = lo + mul[0];
     200              :     const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo);
     201              :     const std::uint64_t hi2 = hi + (mid2 < mid);
     202              :     *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1));
     203              : 
     204              :     if (mmShift == 1)
     205              :     {
     206              :         const std::uint64_t lo3 = lo - mul[0];
     207              :         const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo);
     208              :         const std::uint64_t hi3 = hi - (mid3 > mid);
     209              :         *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1));
     210              :     }
     211              :     else
     212              :     {
     213              :         const std::uint64_t lo3 = lo + lo;
     214              :         const std::uint64_t mid3 = mid + mid + (lo3 < lo);
     215              :         const std::uint64_t hi3 = hi + hi + (mid3 < mid);
     216              :         const std::uint64_t lo4 = lo3 - mul[0];
     217              :         const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
     218              :         const std::uint64_t hi4 = hi3 - (mid4 > mid3);
     219              :         *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64));
     220              :     }
     221              : 
     222              :     return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1));
     223              : }
     224              : 
     225              : #endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
     226              : 
     227              : inline
     228              : std::uint32_t
     229          538 : decimalLength17(
     230              :     const std::uint64_t v)
     231              : {
     232              :     // This is slightly faster than a loop.
     233              :     // The average output length is 16.38 digits, so we check high-to-low.
     234              :     // Function precondition: v is not an 18, 19, or 20-digit number.
     235              :     // (17 digits are sufficient for round-tripping.)
     236          538 :     BOOST_ASSERT(v < 100000000000000000L);
     237          538 :     if (v >= 10000000000000000L) { return 17; }
     238          528 :     if (v >= 1000000000000000L) { return 16; }
     239          509 :     if (v >= 100000000000000L) { return 15; }
     240          505 :     if (v >= 10000000000000L) { return 14; }
     241          500 :     if (v >= 1000000000000L) { return 13; }
     242          494 :     if (v >= 100000000000L) { return 12; }
     243          489 :     if (v >= 10000000000L) { return 11; }
     244          484 :     if (v >= 1000000000L) { return 10; }
     245          474 :     if (v >= 100000000L) { return 9; }
     246          467 :     if (v >= 10000000L) { return 8; }
     247          461 :     if (v >= 1000000L) { return 7; }
     248          455 :     if (v >= 100000L) { return 6; }
     249          450 :     if (v >= 10000L) { return 5; }
     250          445 :     if (v >= 1000L) { return 4; }
     251          439 :     if (v >= 100L) { return 3; }
     252          421 :     if (v >= 10L) { return 2; }
     253          415 :     return 1;
     254              : }
     255              : 
     256              : // A floating decimal representing m * 10^e.
     257              : struct floating_decimal_64
     258              : {
     259              :     std::uint64_t mantissa;
     260              :     // Decimal exponent's range is -324 to 308
     261              :     // inclusive, and can fit in a short if needed.
     262              :     std::int32_t exponent;
     263              : };
     264              : 
     265              : inline
     266              : floating_decimal_64
     267          262 : d2d(
     268              :     const std::uint64_t ieeeMantissa,
     269              :     const std::uint32_t ieeeExponent)
     270              : {
     271              :     std::int32_t e2;
     272              :     std::uint64_t m2;
     273          262 :     if (ieeeExponent == 0)
     274              :     {
     275              :         // We subtract 2 so that the bounds computation has 2 additional bits.
     276           15 :         e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
     277           15 :         m2 = ieeeMantissa;
     278              :     }
     279              :     else
     280              :     {
     281          247 :         e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
     282          247 :         m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
     283              :     }
     284          262 :     const bool even = (m2 & 1) == 0;
     285          262 :     const bool acceptBounds = even;
     286              : 
     287              : #ifdef RYU_DEBUG
     288              :     printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
     289              : #endif
     290              : 
     291              :     // Step 2: Determine the interval of valid decimal representations.
     292          262 :     const std::uint64_t mv = 4 * m2;
     293              :     // Implicit bool -> int conversion. True is 1, false is 0.
     294          262 :     const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
     295              :     // We would compute mp and mm like this:
     296              :     // uint64_t mp = 4 * m2 + 2;
     297              :     // uint64_t mm = mv - 1 - mmShift;
     298              : 
     299              :     // Step 3: Convert to a decimal power base using 128-bit arithmetic.
     300              :     std::uint64_t vr, vp, vm;
     301              :     std::int32_t e10;
     302          262 :     bool vmIsTrailingZeros = false;
     303          262 :     bool vrIsTrailingZeros = false;
     304          262 :     if (e2 >= 0) {
     305              :         // I tried special-casing q == 0, but there was no effect on performance.
     306              :         // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
     307          128 :         const std::uint32_t q = log10Pow2(e2) - (e2 > 3);
     308          128 :         e10 = (std::int32_t)q;
     309          128 :         const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1;
     310          128 :         const std::int32_t i = -e2 + (std::int32_t)q + k;
     311              : #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
     312              :         uint64_t pow5[2];
     313              :         double_computeInvPow5(q, pow5);
     314              :         vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift);
     315              : #else
     316          128 :         vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift);
     317              : #endif
     318              : #ifdef RYU_DEBUG
     319              :         printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
     320              :         printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     321              : #endif
     322          128 :         if (q <= 21)
     323              :         {
     324              :             // This should use q <= 22, but I think 21 is also safe. Smaller values
     325              :             // may still be safe, but it's more difficult to reason about them.
     326              :             // Only one of mp, mv, and mm can be a multiple of 5, if any.
     327          114 :             const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv));
     328          114 :             if (mvMod5 == 0)
     329              :             {
     330           86 :                 vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
     331              :             }
     332           28 :             else if (acceptBounds)
     333              :             {
     334              :                 // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
     335              :                 // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
     336              :                 // <=> true && pow5Factor(mm) >= q, since e2 >= q.
     337           11 :                 vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
     338              :             }
     339              :             else
     340              :             {
     341              :                 // Same as min(e2 + 1, pow5Factor(mp)) >= q.
     342           17 :                 vp -= multipleOfPowerOf5(mv + 2, q);
     343              :             }
     344              :         }
     345              :     }
     346              :     else
     347              :     {
     348              :         // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
     349          134 :         const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1);
     350          134 :         e10 = (std::int32_t)q + e2;
     351          134 :         const std::int32_t i = -e2 - (std::int32_t)q;
     352          134 :         const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
     353          134 :         const std::int32_t j = (std::int32_t)q - k;
     354              : #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
     355              :         std::uint64_t pow5[2];
     356              :         double_computePow5(i, pow5);
     357              :         vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift);
     358              : #else
     359          134 :         vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift);
     360              : #endif
     361              : #ifdef RYU_DEBUG
     362              :         printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
     363              :         printf("%u %d %d %d\n", q, i, k, j);
     364              :         printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     365              : #endif
     366          134 :         if (q <= 1)
     367              :         {
     368              :             // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
     369              :             // mv = 4 * m2, so it always has at least two trailing 0 bits.
     370            3 :             vrIsTrailingZeros = true;
     371            3 :             if (acceptBounds)
     372              :             {
     373              :                 // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
     374            3 :                 vmIsTrailingZeros = mmShift == 1;
     375              :             }
     376              :             else
     377              :             {
     378              :                 // mp = mv + 2, so it always has at least one trailing 0 bit.
     379            0 :                 --vp;
     380              :             }
     381              :         }
     382          131 :         else if (q < 63)
     383              :         {
     384              :             // TODO(ulfjack): Use a tighter bound here.
     385              :             // We want to know if the full product has at least q trailing zeros.
     386              :             // We need to compute min(p2(mv), p5(mv) - e2) >= q
     387              :             // <=> p2(mv) >= q && p5(mv) - e2 >= q
     388              :             // <=> p2(mv) >= q (because -e2 >= q)
     389           96 :             vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
     390              : #ifdef RYU_DEBUG
     391              :             printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     392              : #endif
     393              :         }
     394              :     }
     395              : #ifdef RYU_DEBUG
     396              :     printf("e10=%d\n", e10);
     397              :     printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     398              :     printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
     399              :     printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     400              : #endif
     401              : 
     402              :     // Step 4: Find the shortest decimal representation in the interval of valid representations.
     403          262 :     std::int32_t removed = 0;
     404          262 :     std::uint8_t lastRemovedDigit = 0;
     405              :     std::uint64_t output;
     406              :     // On average, we remove ~2 digits.
     407          262 :     if (vmIsTrailingZeros || vrIsTrailingZeros)
     408              :     {
     409              :         // General case, which happens rarely (~0.7%).
     410              :         for (;;)
     411              :         {
     412         1663 :             const std::uint64_t vpDiv10 = div10(vp);
     413         1663 :             const std::uint64_t vmDiv10 = div10(vm);
     414         1663 :             if (vpDiv10 <= vmDiv10)
     415           94 :                 break;
     416         1569 :             const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
     417         1569 :             const std::uint64_t vrDiv10 = div10(vr);
     418         1569 :             const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
     419         1569 :             vmIsTrailingZeros &= vmMod10 == 0;
     420         1569 :             vrIsTrailingZeros &= lastRemovedDigit == 0;
     421         1569 :             lastRemovedDigit = (uint8_t)vrMod10;
     422         1569 :             vr = vrDiv10;
     423         1569 :             vp = vpDiv10;
     424         1569 :             vm = vmDiv10;
     425         1569 :             ++removed;
     426         1569 :         }
     427              : #ifdef RYU_DEBUG
     428              :         printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     429              :         printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
     430              : #endif
     431           94 :         if (vmIsTrailingZeros)
     432              :         {
     433              :             for (;;)
     434              :             {
     435            3 :                 const std::uint64_t vmDiv10 = div10(vm);
     436            3 :                 const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
     437            3 :                 if (vmMod10 != 0)
     438            2 :                     break;
     439            1 :                 const std::uint64_t vpDiv10 = div10(vp);
     440            1 :                 const std::uint64_t vrDiv10 = div10(vr);
     441            1 :                 const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
     442            1 :                 vrIsTrailingZeros &= lastRemovedDigit == 0;
     443            1 :                 lastRemovedDigit = (uint8_t)vrMod10;
     444            1 :                 vr = vrDiv10;
     445            1 :                 vp = vpDiv10;
     446            1 :                 vm = vmDiv10;
     447            1 :                 ++removed;
     448            1 :             }
     449              :         }
     450              : #ifdef RYU_DEBUG
     451              :         printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
     452              :         printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     453              : #endif
     454           94 :         if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
     455              :         {
     456              :             // Round even if the exact number is .....50..0.
     457            1 :             lastRemovedDigit = 4;
     458              :         }
     459              :         // We need to take vr + 1 if vr is outside bounds or we need to round up.
     460           94 :         output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
     461           94 :     }
     462              :     else
     463              :     {
     464              :         // Specialized for the common case (~99.3%). Percentages below are relative to this.
     465          168 :         bool roundUp = false;
     466          168 :         const std::uint64_t vpDiv100 = div100(vp);
     467          168 :         const std::uint64_t vmDiv100 = div100(vm);
     468          168 :         if (vpDiv100 > vmDiv100)
     469              :         {
     470              :             // Optimization: remove two digits at a time (~86.2%).
     471          161 :             const std::uint64_t vrDiv100 = div100(vr);
     472          161 :             const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100);
     473          161 :             roundUp = vrMod100 >= 50;
     474          161 :             vr = vrDiv100;
     475          161 :             vp = vpDiv100;
     476          161 :             vm = vmDiv100;
     477          161 :             removed += 2;
     478              :         }
     479              :         // Loop iterations below (approximately), without optimization above:
     480              :         // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
     481              :         // Loop iterations below (approximately), with optimization above:
     482              :         // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
     483              :         for (;;)
     484              :         {
     485         2256 :             const std::uint64_t vpDiv10 = div10(vp);
     486         2256 :             const std::uint64_t vmDiv10 = div10(vm);
     487         2256 :             if (vpDiv10 <= vmDiv10)
     488          168 :                 break;
     489         2088 :             const std::uint64_t vrDiv10 = div10(vr);
     490         2088 :             const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
     491         2088 :             roundUp = vrMod10 >= 5;
     492         2088 :             vr = vrDiv10;
     493         2088 :             vp = vpDiv10;
     494         2088 :             vm = vmDiv10;
     495         2088 :             ++removed;
     496         2088 :         }
     497              : #ifdef RYU_DEBUG
     498              :         printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
     499              :         printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
     500              : #endif
     501              :         // We need to take vr + 1 if vr is outside bounds or we need to round up.
     502          168 :         output = vr + (vr == vm || roundUp);
     503              :     }
     504          262 :     const std::int32_t exp = e10 + removed;
     505              : 
     506              : #ifdef RYU_DEBUG
     507              :     printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
     508              :     printf("O=%" PRIu64 "\n", output);
     509              :     printf("EXP=%d\n", exp);
     510              : #endif
     511              : 
     512              :     floating_decimal_64 fd;
     513          262 :     fd.exponent = exp;
     514          262 :     fd.mantissa = output;
     515          262 :     return fd;
     516              : }
     517              : 
     518              : inline
     519              : int
     520          538 : to_chars(
     521              :     const floating_decimal_64 v,
     522              :     const bool sign,
     523              :     char* const result)
     524              : {
     525              :     // Step 5: Print the decimal representation.
     526          538 :     int index = 0;
     527          538 :     if (sign)
     528          129 :         result[index++] = '-';
     529              : 
     530          538 :     std::uint64_t output = v.mantissa;
     531          538 :     std::uint32_t const olength = decimalLength17(output);
     532              : 
     533              : #ifdef RYU_DEBUG
     534              :     printf("DIGITS=%" PRIu64 "\n", v.mantissa);
     535              :     printf("OLEN=%u\n", olength);
     536              :     printf("EXP=%u\n", v.exponent + olength);
     537              : #endif
     538              : 
     539              :     // Print the decimal digits.
     540              :     // The following code is equivalent to:
     541              :     // for (uint32_t i = 0; i < olength - 1; ++i) {
     542              :     //   const uint32_t c = output % 10; output /= 10;
     543              :     //   result[index + olength - i] = (char) ('0' + c);
     544              :     // }
     545              :     // result[index] = '0' + output % 10;
     546              : 
     547          538 :     std::uint32_t i = 0;
     548              :     // We prefer 32-bit operations, even on 64-bit platforms.
     549              :     // We have at most 17 digits, and uint32_t can store 9 digits.
     550              :     // If output doesn't fit into uint32_t, we cut off 8 digits,
     551              :     // so the rest will fit into uint32_t.
     552          538 :     if ((output >> 32) != 0)
     553              :     {
     554              :         // Expensive 64-bit division.
     555           59 :         std::uint64_t const q = div1e8(output);
     556           59 :         std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q);
     557           59 :         output = q;
     558              : 
     559           59 :         const std::uint32_t c = output2 % 10000;
     560           59 :         output2 /= 10000;
     561           59 :         const std::uint32_t d = output2 % 10000;
     562           59 :         const std::uint32_t c0 = (c % 100) << 1;
     563           59 :         const std::uint32_t c1 = (c / 100) << 1;
     564           59 :         const std::uint32_t d0 = (d % 100) << 1;
     565           59 :         const std::uint32_t d1 = (d / 100) << 1;
     566           59 :         std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
     567           59 :         std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
     568           59 :         std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2);
     569           59 :         std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2);
     570           59 :         i += 8;
     571              :     }
     572          538 :     uint32_t output2 = (std::uint32_t)output;
     573          638 :     while (output2 >= 10000)
     574              :     {
     575              : #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
     576              :         const uint32_t c = output2 - 10000 * (output2 / 10000);
     577              : #else
     578          100 :         const uint32_t c = output2 % 10000;
     579              : #endif
     580          100 :         output2 /= 10000;
     581          100 :         const uint32_t c0 = (c % 100) << 1;
     582          100 :         const uint32_t c1 = (c / 100) << 1;
     583          100 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
     584          100 :         memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
     585          100 :         i += 4;
     586              :     }
     587          538 :     if (output2 >= 100) {
     588           69 :         const uint32_t c = (output2 % 100) << 1;
     589           69 :         output2 /= 100;
     590           69 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2);
     591           69 :         i += 2;
     592              :     }
     593          538 :     if (output2 >= 10) {
     594           62 :         const uint32_t c = output2 << 1;
     595              :         // We can't use memcpy here: the decimal dot goes between these two digits.
     596           62 :         result[index + olength - i] = DIGIT_TABLE()[c + 1];
     597           62 :         result[index] = DIGIT_TABLE()[c];
     598              :     }
     599              :     else {
     600          476 :         result[index] = (char)('0' + output2);
     601              :     }
     602              : 
     603              :     // Print decimal point if needed.
     604          538 :     if (olength > 1) {
     605          123 :         result[index + 1] = '.';
     606          123 :         index += olength + 1;
     607              :     }
     608              :     else {
     609          415 :         ++index;
     610              :     }
     611              : 
     612              :     // Print the exponent.
     613          538 :     result[index++] = 'E';
     614          538 :     int32_t exp = v.exponent + (int32_t)olength - 1;
     615          538 :     if (exp < 0) {
     616           92 :         result[index++] = '-';
     617           92 :         exp = -exp;
     618              :     }
     619              : 
     620          538 :     if (exp >= 100) {
     621           33 :         const int32_t c = exp % 10;
     622           33 :         memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2);
     623           33 :         result[index + 2] = (char)('0' + c);
     624           33 :         index += 3;
     625              :     }
     626          505 :     else if (exp >= 10) {
     627          180 :         memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2);
     628          180 :         index += 2;
     629              :     }
     630              :     else {
     631          325 :         result[index++] = (char)('0' + exp);
     632              :     }
     633              : 
     634          538 :     return index;
     635              : }
     636              : 
     637          538 : static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
     638              :   floating_decimal_64* const v) {
     639          538 :   const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
     640          538 :   const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
     641              : 
     642          538 :   if (e2 > 0) {
     643              :     // f = m2 * 2^e2 >= 2^53 is an integer.
     644              :     // Ignore this case for now.
     645          131 :     return false;
     646              :   }
     647              : 
     648          407 :   if (e2 < -52) {
     649              :     // f < 1.
     650           92 :     return false;
     651              :   }
     652              : 
     653              :   // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
     654              :   // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
     655          315 :   const uint64_t mask = (1ull << -e2) - 1;
     656          315 :   const uint64_t fraction = m2 & mask;
     657          315 :   if (fraction != 0) {
     658           39 :     return false;
     659              :   }
     660              : 
     661              :   // f is an integer in the range [1, 2^53).
     662              :   // Note: mantissa might contain trailing (decimal) 0's.
     663              :   // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
     664          276 :   v->mantissa = m2 >> -e2;
     665          276 :   v->exponent = 0;
     666          276 :   return true;
     667              : }
     668              : 
     669              : } // detail
     670              : 
     671              : int
     672          609 : d2s_buffered_n(
     673              :     double f,
     674              :     char* result,
     675              :     bool allow_infinity_and_nan) noexcept
     676              : {
     677              :     using namespace detail;
     678              :     // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
     679          609 :     std::uint64_t const bits = double_to_bits(f);
     680              : 
     681              : #ifdef RYU_DEBUG
     682              :     printf("IN=");
     683              :     for (std::int32_t bit = 63; bit >= 0; --bit) {
     684              :         printf("%d", (int)((bits >> bit) & 1));
     685              :     }
     686              :     printf("\n");
     687              : #endif
     688              : 
     689              :     // Decode bits into sign, mantissa, and exponent.
     690          609 :     const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
     691          609 :     const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
     692          609 :     const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
     693              :     // Case distinction; exit early for the easy cases.
     694          609 :     if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
     695              :         // We changed how special numbers are output by default
     696           71 :         if (allow_infinity_and_nan)
     697           11 :             return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
     698              :         else
     699           60 :             return copy_special_str_conforming(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
     700              : 
     701              :     }
     702              : 
     703              :     floating_decimal_64 v;
     704          538 :     const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
     705          538 :     if (isSmallInt) {
     706              :         // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
     707              :         // For scientific notation we need to move these zeros into the exponent.
     708              :         // (This is not needed for fixed-point notation, so it might be beneficial to trim
     709              :         // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
     710              :         for (;;) {
     711          698 :             std::uint64_t const q = div10(v.mantissa);
     712          698 :             std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q);
     713          698 :             if (r != 0)
     714          276 :                 break;
     715          422 :             v.mantissa = q;
     716          422 :             ++v.exponent;
     717          422 :         }
     718              :     }
     719              :     else {
     720          262 :         v = d2d(ieeeMantissa, ieeeExponent);
     721              :     }
     722              : 
     723          538 :     return to_chars(v, ieeeSign, result);
     724              : }
     725              : 
     726              : } // ryu
     727              : 
     728              : } // detail
     729              : } // namespace json
     730              : } // namespace boost
     731              : 
     732              : #endif
        

Generated by: LCOV version 2.1