| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // Copyright 2020-2023 Daniel Lemire | ||
| 2 | // Copyright 2023 Matt Borland | ||
| 3 | // Distributed under the Boost Software License, Version 1.0. | ||
| 4 | // https://www.boost.org/LICENSE_1_0.txt | ||
| 5 | // | ||
| 6 | // Derivative of: https://github.com/fastfloat/fast_float | ||
| 7 | |||
| 8 | #ifndef BOOST_JSON_DETAIL_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP | ||
| 9 | #define BOOST_JSON_DETAIL_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP | ||
| 10 | |||
| 11 | #include <boost/json/detail/charconv/detail/fast_float/float_common.hpp> | ||
| 12 | #include <boost/json/detail/charconv/detail/fast_float/bigint.hpp> | ||
| 13 | #include <boost/json/detail/charconv/detail/fast_float/ascii_number.hpp> | ||
| 14 | #include <algorithm> | ||
| 15 | #include <cstdint> | ||
| 16 | #include <cstring> | ||
| 17 | #include <iterator> | ||
| 18 | |||
| 19 | namespace boost { namespace json { namespace detail { namespace charconv { namespace detail { namespace fast_float { | ||
| 20 | |||
| 21 | // 1e0 to 1e19 | ||
| 22 | constexpr static uint64_t powers_of_ten_uint64[] = { | ||
| 23 | 1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL, | ||
| 24 | 1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL, | ||
| 25 | 100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL, | ||
| 26 | 1000000000000000000UL, 10000000000000000000UL}; | ||
| 27 | |||
| 28 | // calculate the exponent, in scientific notation, of the number. | ||
| 29 | // this algorithm is not even close to optimized, but it has no practical | ||
| 30 | // effect on performance: in order to have a faster algorithm, we'd need | ||
| 31 | // to slow down performance for faster algorithms, and this is still fast. | ||
| 32 | template <typename UC> | ||
| 33 | BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE | ||
| 34 | int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept { | ||
| 35 | 2986 | uint64_t mantissa = num.mantissa; | |
| 36 | 2986 | int32_t exponent = int32_t(num.exponent); | |
| 37 |
2/2✓ Branch 0 taken 11944 times.
✓ Branch 1 taken 2986 times.
|
14930 | while (mantissa >= 10000) { |
| 38 | 11944 | mantissa /= 10000; | |
| 39 | 11944 | exponent += 4; | |
| 40 | } | ||
| 41 |
2/2✓ Branch 0 taken 2986 times.
✓ Branch 1 taken 2986 times.
|
5972 | while (mantissa >= 100) { |
| 42 | 2986 | mantissa /= 100; | |
| 43 | 2986 | exponent += 2; | |
| 44 | } | ||
| 45 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2986 times.
|
2986 | while (mantissa >= 10) { |
| 46 | ✗ | mantissa /= 10; | |
| 47 | ✗ | exponent += 1; | |
| 48 | } | ||
| 49 | 2986 | return exponent; | |
| 50 | } | ||
| 51 | |||
| 52 | // this converts a native floating-point number to an extended-precision float. | ||
| 53 | template <typename T> | ||
| 54 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 55 | adjusted_mantissa to_extended(T value) noexcept { | ||
| 56 | using equiv_uint = typename binary_format<T>::equiv_uint; | ||
| 57 | 1611 | constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); | |
| 58 | 1611 | constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); | |
| 59 | 1611 | constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask(); | |
| 60 | |||
| 61 | 1611 | adjusted_mantissa am; | |
| 62 | 1611 | int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent(); | |
| 63 | equiv_uint bits; | ||
| 64 | #ifdef BOOST_JSON_HAS_BIT_CAST | ||
| 65 | bits = std::bit_cast<equiv_uint>(value); | ||
| 66 | #else | ||
| 67 | 1611 | ::memcpy(&bits, &value, sizeof(T)); | |
| 68 | #endif | ||
| 69 | 1611 | if ((bits & exponent_mask) == 0) { | |
| 70 | // denormal | ||
| 71 | ✗ | am.power2 = 1 - bias; | |
| 72 | ✗ | am.mantissa = bits & mantissa_mask; | |
| 73 | } else { | ||
| 74 | // normal | ||
| 75 | 1611 | am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits()); | |
| 76 | 1611 | am.power2 -= bias; | |
| 77 | 1611 | am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; | |
| 78 | } | ||
| 79 | |||
| 80 | 1611 | return am; | |
| 81 | } | ||
| 82 | |||
| 83 | // get the extended precision value of the halfway point between b and b+u. | ||
| 84 | // we are given a native float that represents b, so we need to adjust it | ||
| 85 | // halfway between b and b+u. | ||
| 86 | template <typename T> | ||
| 87 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 88 | adjusted_mantissa to_extended_halfway(T value) noexcept { | ||
| 89 | 1611 | adjusted_mantissa am = to_extended(value); | |
| 90 | 1611 | am.mantissa <<= 1; | |
| 91 | 1611 | am.mantissa += 1; | |
| 92 | 1611 | am.power2 -= 1; | |
| 93 | 1611 | return am; | |
| 94 | } | ||
| 95 | |||
| 96 | // round an extended-precision float to the nearest machine float. | ||
| 97 | template <typename T, typename callback> | ||
| 98 | BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE | ||
| 99 | void round(adjusted_mantissa& am, callback cb) noexcept { | ||
| 100 | 4597 | int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1; | |
| 101 | 4597 | if (-am.power2 >= mantissa_shift) { | |
| 102 | // have a denormal float | ||
| 103 | ✗ | int32_t shift = -am.power2 + 1; | |
| 104 | ✗ | cb(am, std::min<int32_t>(shift, 64)); | |
| 105 | // check for round-up: if rounding-nearest carried us to the hidden bit. | ||
| 106 | ✗ | am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1; | |
| 107 | ✗ | return; | |
| 108 | } | ||
| 109 | |||
| 110 | // have a normal float, use the default shift. | ||
| 111 | 4597 | cb(am, mantissa_shift); | |
| 112 | |||
| 113 | // check for carry | ||
| 114 |
3/6✗ Branch 1 not taken.
✓ Branch 2 taken 1611 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 1611 times.
✗ Branch 7 not taken.
✓ Branch 8 taken 1375 times.
|
4597 | if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { |
| 115 | ✗ | am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); | |
| 116 | ✗ | am.power2++; | |
| 117 | } | ||
| 118 | |||
| 119 | // check for infinite: we could have carried to an infinite power | ||
| 120 | 4597 | am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); | |
| 121 |
3/6✗ Branch 1 not taken.
✓ Branch 2 taken 1611 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 1611 times.
✗ Branch 7 not taken.
✓ Branch 8 taken 1375 times.
|
4597 | if (am.power2 >= binary_format<T>::infinite_power()) { |
| 122 | ✗ | am.power2 = binary_format<T>::infinite_power(); | |
| 123 | ✗ | am.mantissa = 0; | |
| 124 | } | ||
| 125 | } | ||
| 126 | |||
| 127 | template <typename callback> | ||
| 128 | BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE | ||
| 129 | void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept { | ||
| 130 | 2986 | const uint64_t mask | |
| 131 | = (shift == 64) | ||
| 132 | ✗ | ? UINT64_MAX | |
| 133 | 2986 | : (uint64_t(1) << shift) - 1; | |
| 134 | 2986 | const uint64_t halfway | |
| 135 | = (shift == 0) | ||
| 136 |
2/4✓ Branch 0 taken 1611 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1375 times.
✗ Branch 3 not taken.
|
2986 | ? 0 |
| 137 | 2986 | : uint64_t(1) << (shift - 1); | |
| 138 | 2986 | uint64_t truncated_bits = am.mantissa & mask; | |
| 139 | 2986 | bool is_above = truncated_bits > halfway; | |
| 140 | 2986 | bool is_halfway = truncated_bits == halfway; | |
| 141 | |||
| 142 | // shift digits into position | ||
| 143 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1375 times.
|
2986 | if (shift == 64) { |
| 144 | ✗ | am.mantissa = 0; | |
| 145 | } else { | ||
| 146 | 2986 | am.mantissa >>= shift; | |
| 147 | } | ||
| 148 | 2986 | am.power2 += shift; | |
| 149 | |||
| 150 | 2986 | bool is_odd = (am.mantissa & 1) == 1; | |
| 151 | 2986 | am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); | |
| 152 | 2986 | } | |
| 153 | |||
| 154 | BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE | ||
| 155 | void round_down(adjusted_mantissa& am, int32_t shift) noexcept { | ||
| 156 | 1611 | if (shift == 64) { | |
| 157 | ✗ | am.mantissa = 0; | |
| 158 | } else { | ||
| 159 | 1611 | am.mantissa >>= shift; | |
| 160 | } | ||
| 161 | 1611 | am.power2 += shift; | |
| 162 | 1611 | } | |
| 163 | template <typename UC> | ||
| 164 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 165 | void skip_zeros(UC const * & first, UC const * last) noexcept { | ||
| 166 | uint64_t val; | ||
| 167 |
3/12✓ Branch 0 taken 2986 times.
✗ Branch 1 not taken.
✓ Branch 3 taken 2986 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 2986 times.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✗ Branch 13 not taken.
|
5972 | while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) { |
| 168 | 2986 | ::memcpy(&val, first, sizeof(uint64_t)); | |
| 169 |
1/4✓ Branch 1 taken 2986 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
|
2986 | if (val != int_cmp_zeros<UC>()) { |
| 170 | 2986 | break; | |
| 171 | } | ||
| 172 | ✗ | first += int_cmp_len<UC>(); | |
| 173 | } | ||
| 174 |
1/4✓ Branch 0 taken 2986 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
2986 | while (first != last) { |
| 175 |
1/4✓ Branch 0 taken 2986 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
2986 | if (*first != UC('0')) { |
| 176 | 2986 | break; | |
| 177 | } | ||
| 178 | ✗ | first++; | |
| 179 | } | ||
| 180 | 2986 | } | |
| 181 | |||
| 182 | // determine if any non-zero digits were truncated. | ||
| 183 | // all characters must be valid digits. | ||
| 184 | template <typename UC> | ||
| 185 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 186 | bool is_truncated(UC const * first, UC const * last) noexcept { | ||
| 187 | // do 8-bit optimizations, can just compare to 8 literal 0s. | ||
| 188 | uint64_t val; | ||
| 189 | ✗ | while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) { | |
| 190 | ✗ | ::memcpy(&val, first, sizeof(uint64_t)); | |
| 191 | ✗ | if (val != int_cmp_zeros<UC>()) { | |
| 192 | ✗ | return true; | |
| 193 | } | ||
| 194 | ✗ | first += int_cmp_len<UC>(); | |
| 195 | } | ||
| 196 | ✗ | while (first != last) { | |
| 197 | ✗ | if (*first != UC('0')) { | |
| 198 | ✗ | return true; | |
| 199 | } | ||
| 200 | ✗ | ++first; | |
| 201 | } | ||
| 202 | ✗ | return false; | |
| 203 | } | ||
| 204 | template <typename UC> | ||
| 205 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 206 | bool is_truncated(span<const UC> s) noexcept { | ||
| 207 | ✗ | return is_truncated(s.ptr, s.ptr + s.len()); | |
| 208 | } | ||
| 209 | |||
| 210 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 211 | void parse_eight_digits(const char16_t*& , limb& , size_t& , size_t& ) noexcept { | ||
| 212 | // currently unused | ||
| 213 | } | ||
| 214 | |||
| 215 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 216 | void parse_eight_digits(const char32_t*& , limb& , size_t& , size_t& ) noexcept { | ||
| 217 | // currently unused | ||
| 218 | } | ||
| 219 | |||
| 220 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 221 | void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept { | ||
| 222 | 11932 | value = value * 100000000 + parse_eight_digits_unrolled(p); | |
| 223 | 11932 | p += 8; | |
| 224 | 11932 | counter += 8; | |
| 225 | 11932 | count += 8; | |
| 226 | 11932 | } | |
| 227 | |||
| 228 | template <typename UC> | ||
| 229 | BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE | ||
| 230 | void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept { | ||
| 231 | 21125 | value = value * 10 + limb(*p - UC('0')); | |
| 232 | 21125 | p++; | |
| 233 | 21125 | counter++; | |
| 234 | 21125 | count++; | |
| 235 | 21125 | } | |
| 236 | |||
| 237 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 238 | void add_native(bigint& big, limb power, limb value) noexcept { | ||
| 239 | ✗ | big.mul(power); | |
| 240 | 9437 | big.add(value); | |
| 241 | 9437 | } | |
| 242 | |||
| 243 | BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 244 | void round_up_bigint(bigint& big, size_t& count) noexcept { | ||
| 245 | // need to round-up the digits, but need to avoid rounding | ||
| 246 | // ....9999 to ...10000, which could cause a false halfway point. | ||
| 247 | add_native(big, 10, 1); | ||
| 248 | ✗ | count++; | |
| 249 | ✗ | } | |
| 250 | |||
| 251 | // parse the significant digits into a big integer | ||
| 252 | template <typename UC> | ||
| 253 | inline BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 254 | 2986 | void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_digits, size_t& digits) noexcept { | |
| 255 | // try to minimize the number of big integer and scalar multiplication. | ||
| 256 | // therefore, try to parse 8 digits at a time, and multiply by the largest | ||
| 257 | // scalar value (9 or 19 digits) for each step. | ||
| 258 | 2986 | size_t counter = 0; | |
| 259 | 2986 | digits = 0; | |
| 260 | 2986 | limb value = 0; | |
| 261 | #ifdef BOOST_JSON_FASTFLOAT_64BIT_LIMB | ||
| 262 | 2986 | constexpr size_t step = 19; | |
| 263 | #else | ||
| 264 | constexpr size_t step = 9; | ||
| 265 | #endif | ||
| 266 | |||
| 267 | // process all integer digits. | ||
| 268 | 2986 | UC const * p = num.integer.ptr; | |
| 269 | 2986 | UC const * pend = p + num.integer.len(); | |
| 270 | skip_zeros(p, pend); | ||
| 271 | // process all digits, in increments of step per loop | ||
| 272 |
2/2✓ Branch 0 taken 5087 times.
✓ Branch 1 taken 2986 times.
|
8073 | while (p != pend) { |
| 273 | if (std::is_same<UC,char>::value) { | ||
| 274 |
6/8✓ Branch 0 taken 5972 times.
✓ Branch 1 taken 5087 times.
✓ Branch 2 taken 5972 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 5972 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 5972 times.
✓ Branch 7 taken 5087 times.
|
22118 | while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { |
| 275 | parse_eight_digits(p, value, counter, digits); | ||
| 276 | } | ||
| 277 | } | ||
| 278 |
5/6✓ Branch 0 taken 13163 times.
✓ Branch 1 taken 2890 times.
✓ Branch 2 taken 10966 times.
✓ Branch 3 taken 2197 times.
✓ Branch 4 taken 10966 times.
✗ Branch 5 not taken.
|
16053 | while (counter < step && p != pend && digits < max_digits) { |
| 279 | parse_one_digit(p, value, counter, digits); | ||
| 280 | } | ||
| 281 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 5087 times.
|
5087 | if (digits == max_digits) { |
| 282 | // add the temporary value, then check if we've truncated any digits | ||
| 283 | ✗ | add_native(result, limb(powers_of_ten_uint64[counter]), value); | |
| 284 | ✗ | bool truncated = is_truncated(p, pend); | |
| 285 | ✗ | if (num.fraction.ptr != nullptr) { | |
| 286 | ✗ | truncated |= is_truncated(num.fraction); | |
| 287 | } | ||
| 288 | ✗ | if (truncated) { | |
| 289 | round_up_bigint(result, digits); | ||
| 290 | } | ||
| 291 | ✗ | return; | |
| 292 | } else { | ||
| 293 | 5087 | add_native(result, limb(powers_of_ten_uint64[counter]), value); | |
| 294 | 5087 | counter = 0; | |
| 295 | 5087 | value = 0; | |
| 296 | } | ||
| 297 | } | ||
| 298 | |||
| 299 | // add our fraction digits, if they're available. | ||
| 300 |
2/2✓ Branch 0 taken 2980 times.
✓ Branch 1 taken 6 times.
|
2986 | if (num.fraction.ptr != nullptr) { |
| 301 | 2980 | p = num.fraction.ptr; | |
| 302 | 2980 | pend = p + num.fraction.len(); | |
| 303 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2980 times.
|
2980 | if (digits == 0) { |
| 304 | skip_zeros(p, pend); | ||
| 305 | } | ||
| 306 | // process all digits, in increments of step per loop | ||
| 307 |
2/2✓ Branch 0 taken 4350 times.
✓ Branch 1 taken 2980 times.
|
7330 | while (p != pend) { |
| 308 | if (std::is_same<UC,char>::value) { | ||
| 309 |
6/8✓ Branch 0 taken 5960 times.
✓ Branch 1 taken 4350 times.
✓ Branch 2 taken 5960 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 5960 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 5960 times.
✓ Branch 7 taken 4350 times.
|
20620 | while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { |
| 310 | parse_eight_digits(p, value, counter, digits); | ||
| 311 | } | ||
| 312 | } | ||
| 313 |
5/6✓ Branch 0 taken 11663 times.
✓ Branch 1 taken 2846 times.
✓ Branch 2 taken 10159 times.
✓ Branch 3 taken 1504 times.
✓ Branch 4 taken 10159 times.
✗ Branch 5 not taken.
|
14509 | while (counter < step && p != pend && digits < max_digits) { |
| 314 | parse_one_digit(p, value, counter, digits); | ||
| 315 | } | ||
| 316 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 4350 times.
|
4350 | if (digits == max_digits) { |
| 317 | // add the temporary value, then check if we've truncated any digits | ||
| 318 | ✗ | add_native(result, limb(powers_of_ten_uint64[counter]), value); | |
| 319 | ✗ | bool truncated = is_truncated(p, pend); | |
| 320 | ✗ | if (truncated) { | |
| 321 | round_up_bigint(result, digits); | ||
| 322 | } | ||
| 323 | ✗ | return; | |
| 324 | } else { | ||
| 325 | 4350 | add_native(result, limb(powers_of_ten_uint64[counter]), value); | |
| 326 | 4350 | counter = 0; | |
| 327 | 4350 | value = 0; | |
| 328 | } | ||
| 329 | } | ||
| 330 | } | ||
| 331 | |||
| 332 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2986 times.
|
2986 | if (counter != 0) { |
| 333 | ✗ | add_native(result, limb(powers_of_ten_uint64[counter]), value); | |
| 334 | } | ||
| 335 | } | ||
| 336 | |||
| 337 | template <typename T> | ||
| 338 | inline BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 339 | 1375 | adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept { | |
| 340 | 1375 | bigmant.pow10(uint32_t(exponent)); | |
| 341 | 1375 | adjusted_mantissa answer; | |
| 342 | bool truncated; | ||
| 343 | 1375 | answer.mantissa = bigmant.hi64(truncated); | |
| 344 | 1375 | int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent(); | |
| 345 | 1375 | answer.power2 = bigmant.bit_length() - 64 + bias; | |
| 346 | |||
| 347 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1375 times.
|
1375 | round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) { |
| 348 |
1/2✓ Branch 0 taken 1375 times.
✗ Branch 1 not taken.
|
1375 | round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { |
| 349 |
8/10✓ Branch 0 taken 926 times.
✓ Branch 1 taken 449 times.
✓ Branch 2 taken 170 times.
✓ Branch 3 taken 756 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 170 times.
✓ Branch 6 taken 367 times.
✓ Branch 7 taken 389 times.
✗ Branch 8 not taken.
✓ Branch 9 taken 367 times.
|
1375 | return is_above || (is_halfway && truncated) || (is_odd && is_halfway); |
| 350 | }); | ||
| 351 | }); | ||
| 352 | |||
| 353 | 1375 | return answer; | |
| 354 | } | ||
| 355 | |||
| 356 | // the scaling here is quite simple: we have, for the real digits `m * 10^e`, | ||
| 357 | // and for the theoretical digits `n * 2^f`. Since `e` is always negative, | ||
| 358 | // to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. | ||
| 359 | // we then need to scale by `2^(f- e)`, and then the two significant digits | ||
| 360 | // are of the same magnitude. | ||
| 361 | template <typename T> | ||
| 362 | inline BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 363 | 1611 | adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept { | |
| 364 | 1611 | bigint& real_digits = bigmant; | |
| 365 | 1611 | int32_t real_exp = exponent; | |
| 366 | |||
| 367 | // get the value of `b`, rounded down, and get a bigint representation of b+h | ||
| 368 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
|
1611 | adjusted_mantissa am_b = am; |
| 369 | // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type. | ||
| 370 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 1611 times.
|
3222 | round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); }); |
| 371 | T b; | ||
| 372 | 1611 | to_float(false, am_b, b); | |
| 373 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
|
1611 | adjusted_mantissa theor = to_extended_halfway(b); |
| 374 | 1611 | bigint theor_digits(theor.mantissa); | |
| 375 | 1611 | int32_t theor_exp = theor.power2; | |
| 376 | |||
| 377 | // scale real digits and theor digits to be same power. | ||
| 378 | 1611 | int32_t pow2_exp = theor_exp - real_exp; | |
| 379 | 1611 | uint32_t pow5_exp = uint32_t(-real_exp); | |
| 380 |
1/2✓ Branch 0 taken 1611 times.
✗ Branch 1 not taken.
|
1611 | if (pow5_exp != 0) { |
| 381 | 1611 | theor_digits.pow5(pow5_exp); | |
| 382 | } | ||
| 383 |
2/2✓ Branch 0 taken 140 times.
✓ Branch 1 taken 1471 times.
|
1611 | if (pow2_exp > 0) { |
| 384 | 140 | theor_digits.pow2(uint32_t(pow2_exp)); | |
| 385 |
2/2✓ Branch 0 taken 1469 times.
✓ Branch 1 taken 2 times.
|
1471 | } else if (pow2_exp < 0) { |
| 386 | 1469 | real_digits.pow2(uint32_t(-pow2_exp)); | |
| 387 | } | ||
| 388 | |||
| 389 | // compare digits, and use it to director rounding | ||
| 390 | 1611 | int ord = real_digits.compare(theor_digits); | |
| 391 | 1611 | adjusted_mantissa answer = am; | |
| 392 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
|
1611 | round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) { |
| 393 |
1/2✓ Branch 0 taken 1611 times.
✗ Branch 1 not taken.
|
1611 | round_nearest_tie_even(a, shift, [ord](bool is_odd, bool, bool) -> bool { |
| 394 |
2/2✓ Branch 0 taken 767 times.
✓ Branch 1 taken 844 times.
|
1611 | if (ord > 0) { |
| 395 | 767 | return true; | |
| 396 |
1/2✓ Branch 0 taken 844 times.
✗ Branch 1 not taken.
|
844 | } else if (ord < 0) { |
| 397 | 844 | return false; | |
| 398 | } else { | ||
| 399 | ✗ | return is_odd; | |
| 400 | } | ||
| 401 | }); | ||
| 402 | }); | ||
| 403 | |||
| 404 | 1611 | return answer; | |
| 405 | } | ||
| 406 | |||
| 407 | // parse the significant digits as a big integer to unambiguously round | ||
| 408 | // the significant digits. here, we are trying to determine how to round | ||
| 409 | // an extended float representation close to `b+h`, halfway between `b` | ||
| 410 | // (the float rounded-down) and `b+u`, the next positive float. this | ||
| 411 | // algorithm is always correct, and uses one of two approaches. when | ||
| 412 | // the exponent is positive relative to the significant digits (such as | ||
| 413 | // 1234), we create a big-integer representation, get the high 64-bits, | ||
| 414 | // determine if any lower bits are truncated, and use that to direct | ||
| 415 | // rounding. in case of a negative exponent relative to the significant | ||
| 416 | // digits (such as 1.2345), we create a theoretical representation of | ||
| 417 | // `b` as a big-integer type, scaled to the same binary exponent as | ||
| 418 | // the actual digits. we then compare the big integer representations | ||
| 419 | // of both, and use that to direct rounding. | ||
| 420 | template <typename T, typename UC> | ||
| 421 | inline BOOST_JSON_FASTFLOAT_CONSTEXPR20 | ||
| 422 | 2986 | adjusted_mantissa digit_comp(parsed_number_string_t<UC>& num, adjusted_mantissa am) noexcept { | |
| 423 | // remove the invalid exponent bias | ||
| 424 | 2986 | am.power2 -= invalid_am_bias; | |
| 425 | |||
| 426 | 2986 | int32_t sci_exp = scientific_exponent(num); | |
| 427 | 2986 | size_t max_digits = binary_format<T>::max_digits(); | |
| 428 | 2986 | size_t digits = 0; | |
| 429 | 2986 | bigint bigmant; | |
| 430 | 2986 | parse_mantissa(bigmant, num, max_digits, digits); | |
| 431 | // can't underflow, since digits is at most max_digits. | ||
| 432 | 2986 | int32_t exponent = sci_exp + 1 - int32_t(digits); | |
| 433 |
2/2✓ Branch 0 taken 1375 times.
✓ Branch 1 taken 1611 times.
|
2986 | if (exponent >= 0) { |
| 434 | 1375 | return positive_digit_comp<T>(bigmant, exponent); | |
| 435 | } else { | ||
| 436 | 1611 | return negative_digit_comp<T>(bigmant, am, exponent); | |
| 437 | } | ||
| 438 | } | ||
| 439 | |||
| 440 | }}}}}} // namespace fast_float | ||
| 441 | |||
| 442 | #endif | ||
| 443 |