GCC Code Coverage Report


Directory: libs/json/include/boost/json/
File: detail/charconv/detail/fast_float/digit_comparison.hpp
Date: 2025-12-23 17:20:53
Exec Total Coverage
Lines: 143 186 76.9%
Functions: 9 9 100.0%
Branches: 78 170 45.9%

Line Branch Exec Source
1 // Copyright 2020-2023 Daniel Lemire
2 // Copyright 2023 Matt Borland
3 // Distributed under the Boost Software License, Version 1.0.
4 // https://www.boost.org/LICENSE_1_0.txt
5 //
6 // Derivative of: https://github.com/fastfloat/fast_float
7
8 #ifndef BOOST_JSON_DETAIL_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP
9 #define BOOST_JSON_DETAIL_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP
10
11 #include <boost/json/detail/charconv/detail/fast_float/float_common.hpp>
12 #include <boost/json/detail/charconv/detail/fast_float/bigint.hpp>
13 #include <boost/json/detail/charconv/detail/fast_float/ascii_number.hpp>
14 #include <algorithm>
15 #include <cstdint>
16 #include <cstring>
17 #include <iterator>
18
19 namespace boost { namespace json { namespace detail { namespace charconv { namespace detail { namespace fast_float {
20
21 // 1e0 to 1e19
22 constexpr static uint64_t powers_of_ten_uint64[] = {
23 1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
24 1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
25 100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
26 1000000000000000000UL, 10000000000000000000UL};
27
28 // calculate the exponent, in scientific notation, of the number.
29 // this algorithm is not even close to optimized, but it has no practical
30 // effect on performance: in order to have a faster algorithm, we'd need
31 // to slow down performance for faster algorithms, and this is still fast.
32 template <typename UC>
33 BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
34 int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept {
35 2986 uint64_t mantissa = num.mantissa;
36 2986 int32_t exponent = int32_t(num.exponent);
37
2/2
✓ Branch 0 taken 11944 times.
✓ Branch 1 taken 2986 times.
14930 while (mantissa >= 10000) {
38 11944 mantissa /= 10000;
39 11944 exponent += 4;
40 }
41
2/2
✓ Branch 0 taken 2986 times.
✓ Branch 1 taken 2986 times.
5972 while (mantissa >= 100) {
42 2986 mantissa /= 100;
43 2986 exponent += 2;
44 }
45
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2986 times.
2986 while (mantissa >= 10) {
46 mantissa /= 10;
47 exponent += 1;
48 }
49 2986 return exponent;
50 }
51
52 // this converts a native floating-point number to an extended-precision float.
53 template <typename T>
54 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
55 adjusted_mantissa to_extended(T value) noexcept {
56 using equiv_uint = typename binary_format<T>::equiv_uint;
57 1611 constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
58 1611 constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
59 1611 constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
60
61 1611 adjusted_mantissa am;
62 1611 int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
63 equiv_uint bits;
64 #ifdef BOOST_JSON_HAS_BIT_CAST
65 bits = std::bit_cast<equiv_uint>(value);
66 #else
67 1611 ::memcpy(&bits, &value, sizeof(T));
68 #endif
69 1611 if ((bits & exponent_mask) == 0) {
70 // denormal
71 am.power2 = 1 - bias;
72 am.mantissa = bits & mantissa_mask;
73 } else {
74 // normal
75 1611 am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
76 1611 am.power2 -= bias;
77 1611 am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
78 }
79
80 1611 return am;
81 }
82
83 // get the extended precision value of the halfway point between b and b+u.
84 // we are given a native float that represents b, so we need to adjust it
85 // halfway between b and b+u.
86 template <typename T>
87 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
88 adjusted_mantissa to_extended_halfway(T value) noexcept {
89 1611 adjusted_mantissa am = to_extended(value);
90 1611 am.mantissa <<= 1;
91 1611 am.mantissa += 1;
92 1611 am.power2 -= 1;
93 1611 return am;
94 }
95
96 // round an extended-precision float to the nearest machine float.
97 template <typename T, typename callback>
98 BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
99 void round(adjusted_mantissa& am, callback cb) noexcept {
100 4597 int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
101 4597 if (-am.power2 >= mantissa_shift) {
102 // have a denormal float
103 int32_t shift = -am.power2 + 1;
104 cb(am, std::min<int32_t>(shift, 64));
105 // check for round-up: if rounding-nearest carried us to the hidden bit.
106 am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
107 return;
108 }
109
110 // have a normal float, use the default shift.
111 4597 cb(am, mantissa_shift);
112
113 // check for carry
114
3/6
✗ Branch 1 not taken.
✓ Branch 2 taken 1611 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 1611 times.
✗ Branch 7 not taken.
✓ Branch 8 taken 1375 times.
4597 if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
115 am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
116 am.power2++;
117 }
118
119 // check for infinite: we could have carried to an infinite power
120 4597 am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
121
3/6
✗ Branch 1 not taken.
✓ Branch 2 taken 1611 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 1611 times.
✗ Branch 7 not taken.
✓ Branch 8 taken 1375 times.
4597 if (am.power2 >= binary_format<T>::infinite_power()) {
122 am.power2 = binary_format<T>::infinite_power();
123 am.mantissa = 0;
124 }
125 }
126
127 template <typename callback>
128 BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
129 void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
130 2986 const uint64_t mask
131 = (shift == 64)
132 ? UINT64_MAX
133 2986 : (uint64_t(1) << shift) - 1;
134 2986 const uint64_t halfway
135 = (shift == 0)
136
2/4
✓ Branch 0 taken 1611 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1375 times.
✗ Branch 3 not taken.
2986 ? 0
137 2986 : uint64_t(1) << (shift - 1);
138 2986 uint64_t truncated_bits = am.mantissa & mask;
139 2986 bool is_above = truncated_bits > halfway;
140 2986 bool is_halfway = truncated_bits == halfway;
141
142 // shift digits into position
143
2/4
✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1375 times.
2986 if (shift == 64) {
144 am.mantissa = 0;
145 } else {
146 2986 am.mantissa >>= shift;
147 }
148 2986 am.power2 += shift;
149
150 2986 bool is_odd = (am.mantissa & 1) == 1;
151 2986 am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
152 2986 }
153
154 BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
155 void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
156 1611 if (shift == 64) {
157 am.mantissa = 0;
158 } else {
159 1611 am.mantissa >>= shift;
160 }
161 1611 am.power2 += shift;
162 1611 }
163 template <typename UC>
164 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
165 void skip_zeros(UC const * & first, UC const * last) noexcept {
166 uint64_t val;
167
3/12
✓ Branch 0 taken 2986 times.
✗ Branch 1 not taken.
✓ Branch 3 taken 2986 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 2986 times.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✗ Branch 13 not taken.
5972 while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
168 2986 ::memcpy(&val, first, sizeof(uint64_t));
169
1/4
✓ Branch 1 taken 2986 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
2986 if (val != int_cmp_zeros<UC>()) {
170 2986 break;
171 }
172 first += int_cmp_len<UC>();
173 }
174
1/4
✓ Branch 0 taken 2986 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
2986 while (first != last) {
175
1/4
✓ Branch 0 taken 2986 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
2986 if (*first != UC('0')) {
176 2986 break;
177 }
178 first++;
179 }
180 2986 }
181
182 // determine if any non-zero digits were truncated.
183 // all characters must be valid digits.
184 template <typename UC>
185 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
186 bool is_truncated(UC const * first, UC const * last) noexcept {
187 // do 8-bit optimizations, can just compare to 8 literal 0s.
188 uint64_t val;
189 while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
190 ::memcpy(&val, first, sizeof(uint64_t));
191 if (val != int_cmp_zeros<UC>()) {
192 return true;
193 }
194 first += int_cmp_len<UC>();
195 }
196 while (first != last) {
197 if (*first != UC('0')) {
198 return true;
199 }
200 ++first;
201 }
202 return false;
203 }
204 template <typename UC>
205 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
206 bool is_truncated(span<const UC> s) noexcept {
207 return is_truncated(s.ptr, s.ptr + s.len());
208 }
209
210 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
211 void parse_eight_digits(const char16_t*& , limb& , size_t& , size_t& ) noexcept {
212 // currently unused
213 }
214
215 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
216 void parse_eight_digits(const char32_t*& , limb& , size_t& , size_t& ) noexcept {
217 // currently unused
218 }
219
220 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
221 void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
222 11932 value = value * 100000000 + parse_eight_digits_unrolled(p);
223 11932 p += 8;
224 11932 counter += 8;
225 11932 count += 8;
226 11932 }
227
228 template <typename UC>
229 BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
230 void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept {
231 21125 value = value * 10 + limb(*p - UC('0'));
232 21125 p++;
233 21125 counter++;
234 21125 count++;
235 21125 }
236
237 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
238 void add_native(bigint& big, limb power, limb value) noexcept {
239 big.mul(power);
240 9437 big.add(value);
241 9437 }
242
243 BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
244 void round_up_bigint(bigint& big, size_t& count) noexcept {
245 // need to round-up the digits, but need to avoid rounding
246 // ....9999 to ...10000, which could cause a false halfway point.
247 add_native(big, 10, 1);
248 count++;
249 }
250
251 // parse the significant digits into a big integer
252 template <typename UC>
253 inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
254 2986 void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_digits, size_t& digits) noexcept {
255 // try to minimize the number of big integer and scalar multiplication.
256 // therefore, try to parse 8 digits at a time, and multiply by the largest
257 // scalar value (9 or 19 digits) for each step.
258 2986 size_t counter = 0;
259 2986 digits = 0;
260 2986 limb value = 0;
261 #ifdef BOOST_JSON_FASTFLOAT_64BIT_LIMB
262 2986 constexpr size_t step = 19;
263 #else
264 constexpr size_t step = 9;
265 #endif
266
267 // process all integer digits.
268 2986 UC const * p = num.integer.ptr;
269 2986 UC const * pend = p + num.integer.len();
270 skip_zeros(p, pend);
271 // process all digits, in increments of step per loop
272
2/2
✓ Branch 0 taken 5087 times.
✓ Branch 1 taken 2986 times.
8073 while (p != pend) {
273 if (std::is_same<UC,char>::value) {
274
6/8
✓ Branch 0 taken 5972 times.
✓ Branch 1 taken 5087 times.
✓ Branch 2 taken 5972 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 5972 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 5972 times.
✓ Branch 7 taken 5087 times.
22118 while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
275 parse_eight_digits(p, value, counter, digits);
276 }
277 }
278
5/6
✓ Branch 0 taken 13163 times.
✓ Branch 1 taken 2890 times.
✓ Branch 2 taken 10966 times.
✓ Branch 3 taken 2197 times.
✓ Branch 4 taken 10966 times.
✗ Branch 5 not taken.
16053 while (counter < step && p != pend && digits < max_digits) {
279 parse_one_digit(p, value, counter, digits);
280 }
281
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 5087 times.
5087 if (digits == max_digits) {
282 // add the temporary value, then check if we've truncated any digits
283 add_native(result, limb(powers_of_ten_uint64[counter]), value);
284 bool truncated = is_truncated(p, pend);
285 if (num.fraction.ptr != nullptr) {
286 truncated |= is_truncated(num.fraction);
287 }
288 if (truncated) {
289 round_up_bigint(result, digits);
290 }
291 return;
292 } else {
293 5087 add_native(result, limb(powers_of_ten_uint64[counter]), value);
294 5087 counter = 0;
295 5087 value = 0;
296 }
297 }
298
299 // add our fraction digits, if they're available.
300
2/2
✓ Branch 0 taken 2980 times.
✓ Branch 1 taken 6 times.
2986 if (num.fraction.ptr != nullptr) {
301 2980 p = num.fraction.ptr;
302 2980 pend = p + num.fraction.len();
303
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2980 times.
2980 if (digits == 0) {
304 skip_zeros(p, pend);
305 }
306 // process all digits, in increments of step per loop
307
2/2
✓ Branch 0 taken 4350 times.
✓ Branch 1 taken 2980 times.
7330 while (p != pend) {
308 if (std::is_same<UC,char>::value) {
309
6/8
✓ Branch 0 taken 5960 times.
✓ Branch 1 taken 4350 times.
✓ Branch 2 taken 5960 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 5960 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 5960 times.
✓ Branch 7 taken 4350 times.
20620 while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
310 parse_eight_digits(p, value, counter, digits);
311 }
312 }
313
5/6
✓ Branch 0 taken 11663 times.
✓ Branch 1 taken 2846 times.
✓ Branch 2 taken 10159 times.
✓ Branch 3 taken 1504 times.
✓ Branch 4 taken 10159 times.
✗ Branch 5 not taken.
14509 while (counter < step && p != pend && digits < max_digits) {
314 parse_one_digit(p, value, counter, digits);
315 }
316
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 4350 times.
4350 if (digits == max_digits) {
317 // add the temporary value, then check if we've truncated any digits
318 add_native(result, limb(powers_of_ten_uint64[counter]), value);
319 bool truncated = is_truncated(p, pend);
320 if (truncated) {
321 round_up_bigint(result, digits);
322 }
323 return;
324 } else {
325 4350 add_native(result, limb(powers_of_ten_uint64[counter]), value);
326 4350 counter = 0;
327 4350 value = 0;
328 }
329 }
330 }
331
332
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2986 times.
2986 if (counter != 0) {
333 add_native(result, limb(powers_of_ten_uint64[counter]), value);
334 }
335 }
336
337 template <typename T>
338 inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
339 1375 adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
340 1375 bigmant.pow10(uint32_t(exponent));
341 1375 adjusted_mantissa answer;
342 bool truncated;
343 1375 answer.mantissa = bigmant.hi64(truncated);
344 1375 int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
345 1375 answer.power2 = bigmant.bit_length() - 64 + bias;
346
347
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1375 times.
1375 round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
348
1/2
✓ Branch 0 taken 1375 times.
✗ Branch 1 not taken.
1375 round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
349
8/10
✓ Branch 0 taken 926 times.
✓ Branch 1 taken 449 times.
✓ Branch 2 taken 170 times.
✓ Branch 3 taken 756 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 170 times.
✓ Branch 6 taken 367 times.
✓ Branch 7 taken 389 times.
✗ Branch 8 not taken.
✓ Branch 9 taken 367 times.
1375 return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
350 });
351 });
352
353 1375 return answer;
354 }
355
356 // the scaling here is quite simple: we have, for the real digits `m * 10^e`,
357 // and for the theoretical digits `n * 2^f`. Since `e` is always negative,
358 // to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
359 // we then need to scale by `2^(f- e)`, and then the two significant digits
360 // are of the same magnitude.
361 template <typename T>
362 inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
363 1611 adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
364 1611 bigint& real_digits = bigmant;
365 1611 int32_t real_exp = exponent;
366
367 // get the value of `b`, rounded down, and get a bigint representation of b+h
368
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
1611 adjusted_mantissa am_b = am;
369 // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
370
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 1611 times.
3222 round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
371 T b;
372 1611 to_float(false, am_b, b);
373
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
1611 adjusted_mantissa theor = to_extended_halfway(b);
374 1611 bigint theor_digits(theor.mantissa);
375 1611 int32_t theor_exp = theor.power2;
376
377 // scale real digits and theor digits to be same power.
378 1611 int32_t pow2_exp = theor_exp - real_exp;
379 1611 uint32_t pow5_exp = uint32_t(-real_exp);
380
1/2
✓ Branch 0 taken 1611 times.
✗ Branch 1 not taken.
1611 if (pow5_exp != 0) {
381 1611 theor_digits.pow5(pow5_exp);
382 }
383
2/2
✓ Branch 0 taken 140 times.
✓ Branch 1 taken 1471 times.
1611 if (pow2_exp > 0) {
384 140 theor_digits.pow2(uint32_t(pow2_exp));
385
2/2
✓ Branch 0 taken 1469 times.
✓ Branch 1 taken 2 times.
1471 } else if (pow2_exp < 0) {
386 1469 real_digits.pow2(uint32_t(-pow2_exp));
387 }
388
389 // compare digits, and use it to director rounding
390 1611 int ord = real_digits.compare(theor_digits);
391 1611 adjusted_mantissa answer = am;
392
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1611 times.
1611 round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
393
1/2
✓ Branch 0 taken 1611 times.
✗ Branch 1 not taken.
1611 round_nearest_tie_even(a, shift, [ord](bool is_odd, bool, bool) -> bool {
394
2/2
✓ Branch 0 taken 767 times.
✓ Branch 1 taken 844 times.
1611 if (ord > 0) {
395 767 return true;
396
1/2
✓ Branch 0 taken 844 times.
✗ Branch 1 not taken.
844 } else if (ord < 0) {
397 844 return false;
398 } else {
399 return is_odd;
400 }
401 });
402 });
403
404 1611 return answer;
405 }
406
407 // parse the significant digits as a big integer to unambiguously round
408 // the significant digits. here, we are trying to determine how to round
409 // an extended float representation close to `b+h`, halfway between `b`
410 // (the float rounded-down) and `b+u`, the next positive float. this
411 // algorithm is always correct, and uses one of two approaches. when
412 // the exponent is positive relative to the significant digits (such as
413 // 1234), we create a big-integer representation, get the high 64-bits,
414 // determine if any lower bits are truncated, and use that to direct
415 // rounding. in case of a negative exponent relative to the significant
416 // digits (such as 1.2345), we create a theoretical representation of
417 // `b` as a big-integer type, scaled to the same binary exponent as
418 // the actual digits. we then compare the big integer representations
419 // of both, and use that to direct rounding.
420 template <typename T, typename UC>
421 inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
422 2986 adjusted_mantissa digit_comp(parsed_number_string_t<UC>& num, adjusted_mantissa am) noexcept {
423 // remove the invalid exponent bias
424 2986 am.power2 -= invalid_am_bias;
425
426 2986 int32_t sci_exp = scientific_exponent(num);
427 2986 size_t max_digits = binary_format<T>::max_digits();
428 2986 size_t digits = 0;
429 2986 bigint bigmant;
430 2986 parse_mantissa(bigmant, num, max_digits, digits);
431 // can't underflow, since digits is at most max_digits.
432 2986 int32_t exponent = sci_exp + 1 - int32_t(digits);
433
2/2
✓ Branch 0 taken 1375 times.
✓ Branch 1 taken 1611 times.
2986 if (exponent >= 0) {
434 1375 return positive_digit_comp<T>(bigmant, exponent);
435 } else {
436 1611 return negative_digit_comp<T>(bigmant, am, exponent);
437 }
438 }
439
440 }}}}}} // namespace fast_float
441
442 #endif
443