| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // Copyright 2018 Ulf Adams | ||
| 2 | // | ||
| 3 | // The contents of this file may be used under the terms of the Apache License, | ||
| 4 | // Version 2.0. | ||
| 5 | // | ||
| 6 | // (See accompanying file LICENSE-Apache or copy at | ||
| 7 | // http://www.apache.org/licenses/LICENSE-2.0) | ||
| 8 | // | ||
| 9 | // Alternatively, the contents of this file may be used under the terms of | ||
| 10 | // the Boost Software License, Version 1.0. | ||
| 11 | // (See accompanying file LICENSE-Boost or copy at | ||
| 12 | // https://www.boost.org/LICENSE_1_0.txt) | ||
| 13 | // | ||
| 14 | // Unless required by applicable law or agreed to in writing, this software | ||
| 15 | // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| 16 | // KIND, either express or implied. | ||
| 17 | |||
| 18 | // Runtime compiler options: | ||
| 19 | // -DRYU_DEBUG Generate verbose debugging output to stdout. | ||
| 20 | // | ||
| 21 | // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower, | ||
| 22 | // depending on your compiler. | ||
| 23 | // | ||
| 24 | // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every | ||
| 25 | // required power of 5, only store every 26th entry, and compute | ||
| 26 | // intermediate values with a multiplication. This reduces the lookup table | ||
| 27 | // size by about 10x (only one case, and only double) at the cost of some | ||
| 28 | // performance. Currently requires MSVC intrinsics. | ||
| 29 | |||
| 30 | /* | ||
| 31 | This is a derivative work | ||
| 32 | */ | ||
| 33 | |||
| 34 | #ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP | ||
| 35 | #define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP | ||
| 36 | |||
| 37 | #include <boost/json/detail/ryu/ryu.hpp> | ||
| 38 | #include <cstdlib> | ||
| 39 | #include <cstring> | ||
| 40 | |||
| 41 | #ifdef RYU_DEBUG | ||
| 42 | #include <stdio.h> | ||
| 43 | #endif | ||
| 44 | |||
| 45 | // ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined. | ||
| 46 | // Let's do the same for now. | ||
| 47 | #if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) | ||
| 48 | #define BOOST_JSON_RYU_HAS_UINT128 | ||
| 49 | #elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) | ||
| 50 | #define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS | ||
| 51 | #endif | ||
| 52 | |||
| 53 | #include <boost/json/detail/ryu/detail/common.hpp> | ||
| 54 | #include <boost/json/detail/ryu/detail/digit_table.hpp> | ||
| 55 | #include <boost/json/detail/ryu/detail/d2s.hpp> | ||
| 56 | #include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp> | ||
| 57 | |||
| 58 | namespace boost { | ||
| 59 | namespace json { | ||
| 60 | namespace detail { | ||
| 61 | |||
| 62 | namespace ryu { | ||
| 63 | namespace detail { | ||
| 64 | |||
| 65 | // We need a 64x128-bit multiplication and a subsequent 128-bit shift. | ||
| 66 | // Multiplication: | ||
| 67 | // The 64-bit factor is variable and passed in, the 128-bit factor comes | ||
| 68 | // from a lookup table. We know that the 64-bit factor only has 55 | ||
| 69 | // significant bits (i.e., the 9 topmost bits are zeros). The 128-bit | ||
| 70 | // factor only has 124 significant bits (i.e., the 4 topmost bits are | ||
| 71 | // zeros). | ||
| 72 | // Shift: | ||
| 73 | // In principle, the multiplication result requires 55 + 124 = 179 bits to | ||
| 74 | // represent. However, we then shift this value to the right by j, which is | ||
| 75 | // at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64 | ||
| 76 | // bits. This means that we only need the topmost 64 significant bits of | ||
| 77 | // the 64x128-bit multiplication. | ||
| 78 | // | ||
| 79 | // There are several ways to do this: | ||
| 80 | // 1. Best case: the compiler exposes a 128-bit type. | ||
| 81 | // We perform two 64x64-bit multiplications, add the higher 64 bits of the | ||
| 82 | // lower result to the higher result, and shift by j - 64 bits. | ||
| 83 | // | ||
| 84 | // We explicitly cast from 64-bit to 128-bit, so the compiler can tell | ||
| 85 | // that these are only 64-bit inputs, and can map these to the best | ||
| 86 | // possible sequence of assembly instructions. | ||
| 87 | // x64 machines happen to have matching assembly instructions for | ||
| 88 | // 64x64-bit multiplications and 128-bit shifts. | ||
| 89 | // | ||
| 90 | // 2. Second best case: the compiler exposes intrinsics for the x64 assembly | ||
| 91 | // instructions mentioned in 1. | ||
| 92 | // | ||
| 93 | // 3. We only have 64x64 bit instructions that return the lower 64 bits of | ||
| 94 | // the result, i.e., we have to use plain C. | ||
| 95 | // Our inputs are less than the full width, so we have three options: | ||
| 96 | // a. Ignore this fact and just implement the intrinsics manually. | ||
| 97 | // b. Split both into 31-bit pieces, which guarantees no internal overflow, | ||
| 98 | // but requires extra work upfront (unless we change the lookup table). | ||
| 99 | // c. Split only the first factor into 31-bit pieces, which also guarantees | ||
| 100 | // no internal overflow, but requires extra work since the intermediate | ||
| 101 | // results are not perfectly aligned. | ||
| 102 | #if defined(BOOST_JSON_RYU_HAS_UINT128) | ||
| 103 | |||
| 104 | // Best case: use 128-bit type. | ||
| 105 | inline | ||
| 106 | std::uint64_t | ||
| 107 | 786 | mulShift( | |
| 108 | const std::uint64_t m, | ||
| 109 | const std::uint64_t* const mul, | ||
| 110 | const std::int32_t j) noexcept | ||
| 111 | { | ||
| 112 | 786 | const uint128_t b0 = ((uint128_t) m) * mul[0]; | |
| 113 | 786 | const uint128_t b2 = ((uint128_t) m) * mul[1]; | |
| 114 | 786 | return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64)); | |
| 115 | } | ||
| 116 | |||
| 117 | inline | ||
| 118 | uint64_t | ||
| 119 | 262 | mulShiftAll( | |
| 120 | const std::uint64_t m, | ||
| 121 | const std::uint64_t* const mul, | ||
| 122 | std::int32_t const j, | ||
| 123 | std::uint64_t* const vp, | ||
| 124 | std::uint64_t* const vm, | ||
| 125 | const std::uint32_t mmShift) noexcept | ||
| 126 | { | ||
| 127 | // m <<= 2; | ||
| 128 | // uint128_t b0 = ((uint128_t) m) * mul[0]; // 0 | ||
| 129 | // uint128_t b2 = ((uint128_t) m) * mul[1]; // 64 | ||
| 130 | // | ||
| 131 | // uint128_t hi = (b0 >> 64) + b2; | ||
| 132 | // uint128_t lo = b0 & 0xffffffffffffffffull; | ||
| 133 | // uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0]; | ||
| 134 | // uint128_t vpLo = lo + (factor << 1); | ||
| 135 | // *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64)); | ||
| 136 | // uint128_t vmLo = lo - (factor << mmShift); | ||
| 137 | // *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64)); | ||
| 138 | // return (std::uint64_t) (hi >> (j - 64)); | ||
| 139 | 262 | *vp = mulShift(4 * m + 2, mul, j); | |
| 140 | 262 | *vm = mulShift(4 * m - 1 - mmShift, mul, j); | |
| 141 | 262 | return mulShift(4 * m, mul, j); | |
| 142 | } | ||
| 143 | |||
| 144 | #elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS) | ||
| 145 | |||
| 146 | inline | ||
| 147 | std::uint64_t | ||
| 148 | mulShift( | ||
| 149 | const std::uint64_t m, | ||
| 150 | const std::uint64_t* const mul, | ||
| 151 | const std::int32_t j) noexcept | ||
| 152 | { | ||
| 153 | // m is maximum 55 bits | ||
| 154 | std::uint64_t high1; // 128 | ||
| 155 | std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64 | ||
| 156 | std::uint64_t high0; // 64 | ||
| 157 | umul128(m, mul[0], &high0); // 0 | ||
| 158 | std::uint64_t const sum = high0 + low1; | ||
| 159 | if (sum < high0) | ||
| 160 | ++high1; // overflow into high1 | ||
| 161 | return shiftright128(sum, high1, j - 64); | ||
| 162 | } | ||
| 163 | |||
| 164 | inline | ||
| 165 | std::uint64_t | ||
| 166 | mulShiftAll( | ||
| 167 | const std::uint64_t m, | ||
| 168 | const std::uint64_t* const mul, | ||
| 169 | const std::int32_t j, | ||
| 170 | std::uint64_t* const vp, | ||
| 171 | std::uint64_t* const vm, | ||
| 172 | const std::uint32_t mmShift) noexcept | ||
| 173 | { | ||
| 174 | *vp = mulShift(4 * m + 2, mul, j); | ||
| 175 | *vm = mulShift(4 * m - 1 - mmShift, mul, j); | ||
| 176 | return mulShift(4 * m, mul, j); | ||
| 177 | } | ||
| 178 | |||
| 179 | #else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS) | ||
| 180 | |||
| 181 | inline | ||
| 182 | std::uint64_t | ||
| 183 | mulShiftAll( | ||
| 184 | std::uint64_t m, | ||
| 185 | const std::uint64_t* const mul, | ||
| 186 | const std::int32_t j, | ||
| 187 | std::uint64_t* const vp, | ||
| 188 | std::uint64_t* const vm, | ||
| 189 | const std::uint32_t mmShift) | ||
| 190 | { | ||
| 191 | m <<= 1; | ||
| 192 | // m is maximum 55 bits | ||
| 193 | std::uint64_t tmp; | ||
| 194 | std::uint64_t const lo = umul128(m, mul[0], &tmp); | ||
| 195 | std::uint64_t hi; | ||
| 196 | std::uint64_t const mid = tmp + umul128(m, mul[1], &hi); | ||
| 197 | hi += mid < tmp; // overflow into hi | ||
| 198 | |||
| 199 | const std::uint64_t lo2 = lo + mul[0]; | ||
| 200 | const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo); | ||
| 201 | const std::uint64_t hi2 = hi + (mid2 < mid); | ||
| 202 | *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1)); | ||
| 203 | |||
| 204 | if (mmShift == 1) | ||
| 205 | { | ||
| 206 | const std::uint64_t lo3 = lo - mul[0]; | ||
| 207 | const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo); | ||
| 208 | const std::uint64_t hi3 = hi - (mid3 > mid); | ||
| 209 | *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1)); | ||
| 210 | } | ||
| 211 | else | ||
| 212 | { | ||
| 213 | const std::uint64_t lo3 = lo + lo; | ||
| 214 | const std::uint64_t mid3 = mid + mid + (lo3 < lo); | ||
| 215 | const std::uint64_t hi3 = hi + hi + (mid3 < mid); | ||
| 216 | const std::uint64_t lo4 = lo3 - mul[0]; | ||
| 217 | const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3); | ||
| 218 | const std::uint64_t hi4 = hi3 - (mid4 > mid3); | ||
| 219 | *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64)); | ||
| 220 | } | ||
| 221 | |||
| 222 | return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1)); | ||
| 223 | } | ||
| 224 | |||
| 225 | #endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS | ||
| 226 | |||
| 227 | inline | ||
| 228 | std::uint32_t | ||
| 229 | 538 | decimalLength17( | |
| 230 | const std::uint64_t v) | ||
| 231 | { | ||
| 232 | // This is slightly faster than a loop. | ||
| 233 | // The average output length is 16.38 digits, so we check high-to-low. | ||
| 234 | // Function precondition: v is not an 18, 19, or 20-digit number. | ||
| 235 | // (17 digits are sufficient for round-tripping.) | ||
| 236 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 538 times.
|
538 | BOOST_ASSERT(v < 100000000000000000L); |
| 237 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 528 times.
|
538 | if (v >= 10000000000000000L) { return 17; } |
| 238 |
2/2✓ Branch 0 taken 19 times.
✓ Branch 1 taken 509 times.
|
528 | if (v >= 1000000000000000L) { return 16; } |
| 239 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 505 times.
|
509 | if (v >= 100000000000000L) { return 15; } |
| 240 |
2/2✓ Branch 0 taken 5 times.
✓ Branch 1 taken 500 times.
|
505 | if (v >= 10000000000000L) { return 14; } |
| 241 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 494 times.
|
500 | if (v >= 1000000000000L) { return 13; } |
| 242 |
2/2✓ Branch 0 taken 5 times.
✓ Branch 1 taken 489 times.
|
494 | if (v >= 100000000000L) { return 12; } |
| 243 |
2/2✓ Branch 0 taken 5 times.
✓ Branch 1 taken 484 times.
|
489 | if (v >= 10000000000L) { return 11; } |
| 244 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 474 times.
|
484 | if (v >= 1000000000L) { return 10; } |
| 245 |
2/2✓ Branch 0 taken 7 times.
✓ Branch 1 taken 467 times.
|
474 | if (v >= 100000000L) { return 9; } |
| 246 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 461 times.
|
467 | if (v >= 10000000L) { return 8; } |
| 247 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 455 times.
|
461 | if (v >= 1000000L) { return 7; } |
| 248 |
2/2✓ Branch 0 taken 5 times.
✓ Branch 1 taken 450 times.
|
455 | if (v >= 100000L) { return 6; } |
| 249 |
2/2✓ Branch 0 taken 5 times.
✓ Branch 1 taken 445 times.
|
450 | if (v >= 10000L) { return 5; } |
| 250 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 439 times.
|
445 | if (v >= 1000L) { return 4; } |
| 251 |
2/2✓ Branch 0 taken 18 times.
✓ Branch 1 taken 421 times.
|
439 | if (v >= 100L) { return 3; } |
| 252 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 415 times.
|
421 | if (v >= 10L) { return 2; } |
| 253 | 415 | return 1; | |
| 254 | } | ||
| 255 | |||
| 256 | // A floating decimal representing m * 10^e. | ||
| 257 | struct floating_decimal_64 | ||
| 258 | { | ||
| 259 | std::uint64_t mantissa; | ||
| 260 | // Decimal exponent's range is -324 to 308 | ||
| 261 | // inclusive, and can fit in a short if needed. | ||
| 262 | std::int32_t exponent; | ||
| 263 | }; | ||
| 264 | |||
| 265 | inline | ||
| 266 | floating_decimal_64 | ||
| 267 | 262 | d2d( | |
| 268 | const std::uint64_t ieeeMantissa, | ||
| 269 | const std::uint32_t ieeeExponent) | ||
| 270 | { | ||
| 271 | std::int32_t e2; | ||
| 272 | std::uint64_t m2; | ||
| 273 |
2/2✓ Branch 0 taken 15 times.
✓ Branch 1 taken 247 times.
|
262 | if (ieeeExponent == 0) |
| 274 | { | ||
| 275 | // We subtract 2 so that the bounds computation has 2 additional bits. | ||
| 276 | 15 | e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; | |
| 277 | 15 | m2 = ieeeMantissa; | |
| 278 | } | ||
| 279 | else | ||
| 280 | { | ||
| 281 | 247 | e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; | |
| 282 | 247 | m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; | |
| 283 | } | ||
| 284 | 262 | const bool even = (m2 & 1) == 0; | |
| 285 | 262 | const bool acceptBounds = even; | |
| 286 | |||
| 287 | #ifdef RYU_DEBUG | ||
| 288 | printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2); | ||
| 289 | #endif | ||
| 290 | |||
| 291 | // Step 2: Determine the interval of valid decimal representations. | ||
| 292 | 262 | const std::uint64_t mv = 4 * m2; | |
| 293 | // Implicit bool -> int conversion. True is 1, false is 0. | ||
| 294 |
4/4✓ Branch 0 taken 9 times.
✓ Branch 1 taken 253 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 8 times.
|
262 | const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; |
| 295 | // We would compute mp and mm like this: | ||
| 296 | // uint64_t mp = 4 * m2 + 2; | ||
| 297 | // uint64_t mm = mv - 1 - mmShift; | ||
| 298 | |||
| 299 | // Step 3: Convert to a decimal power base using 128-bit arithmetic. | ||
| 300 | std::uint64_t vr, vp, vm; | ||
| 301 | std::int32_t e10; | ||
| 302 | 262 | bool vmIsTrailingZeros = false; | |
| 303 | 262 | bool vrIsTrailingZeros = false; | |
| 304 |
2/2✓ Branch 0 taken 128 times.
✓ Branch 1 taken 134 times.
|
262 | if (e2 >= 0) { |
| 305 | // I tried special-casing q == 0, but there was no effect on performance. | ||
| 306 | // This expression is slightly faster than max(0, log10Pow2(e2) - 1). | ||
| 307 | 128 | const std::uint32_t q = log10Pow2(e2) - (e2 > 3); | |
| 308 | 128 | e10 = (std::int32_t)q; | |
| 309 | 128 | const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1; | |
| 310 | 128 | const std::int32_t i = -e2 + (std::int32_t)q + k; | |
| 311 | #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE) | ||
| 312 | uint64_t pow5[2]; | ||
| 313 | double_computeInvPow5(q, pow5); | ||
| 314 | vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift); | ||
| 315 | #else | ||
| 316 | 128 | vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift); | |
| 317 | #endif | ||
| 318 | #ifdef RYU_DEBUG | ||
| 319 | printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q); | ||
| 320 | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); | ||
| 321 | #endif | ||
| 322 |
2/2✓ Branch 0 taken 114 times.
✓ Branch 1 taken 14 times.
|
128 | if (q <= 21) |
| 323 | { | ||
| 324 | // This should use q <= 22, but I think 21 is also safe. Smaller values | ||
| 325 | // may still be safe, but it's more difficult to reason about them. | ||
| 326 | // Only one of mp, mv, and mm can be a multiple of 5, if any. | ||
| 327 | 114 | const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv)); | |
| 328 |
2/2✓ Branch 0 taken 86 times.
✓ Branch 1 taken 28 times.
|
114 | if (mvMod5 == 0) |
| 329 | { | ||
| 330 | 86 | vrIsTrailingZeros = multipleOfPowerOf5(mv, q); | |
| 331 | } | ||
| 332 |
2/2✓ Branch 0 taken 11 times.
✓ Branch 1 taken 17 times.
|
28 | else if (acceptBounds) |
| 333 | { | ||
| 334 | // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q | ||
| 335 | // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q | ||
| 336 | // <=> true && pow5Factor(mm) >= q, since e2 >= q. | ||
| 337 | 11 | vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q); | |
| 338 | } | ||
| 339 | else | ||
| 340 | { | ||
| 341 | // Same as min(e2 + 1, pow5Factor(mp)) >= q. | ||
| 342 | 17 | vp -= multipleOfPowerOf5(mv + 2, q); | |
| 343 | } | ||
| 344 | } | ||
| 345 | } | ||
| 346 | else | ||
| 347 | { | ||
| 348 | // This expression is slightly faster than max(0, log10Pow5(-e2) - 1). | ||
| 349 | 134 | const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1); | |
| 350 | 134 | e10 = (std::int32_t)q + e2; | |
| 351 | 134 | const std::int32_t i = -e2 - (std::int32_t)q; | |
| 352 | 134 | const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; | |
| 353 | 134 | const std::int32_t j = (std::int32_t)q - k; | |
| 354 | #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE) | ||
| 355 | std::uint64_t pow5[2]; | ||
| 356 | double_computePow5(i, pow5); | ||
| 357 | vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift); | ||
| 358 | #else | ||
| 359 | 134 | vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift); | |
| 360 | #endif | ||
| 361 | #ifdef RYU_DEBUG | ||
| 362 | printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q); | ||
| 363 | printf("%u %d %d %d\n", q, i, k, j); | ||
| 364 | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); | ||
| 365 | #endif | ||
| 366 |
2/2✓ Branch 0 taken 3 times.
✓ Branch 1 taken 131 times.
|
134 | if (q <= 1) |
| 367 | { | ||
| 368 | // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. | ||
| 369 | // mv = 4 * m2, so it always has at least two trailing 0 bits. | ||
| 370 | 3 | vrIsTrailingZeros = true; | |
| 371 |
1/2✓ Branch 0 taken 3 times.
✗ Branch 1 not taken.
|
3 | if (acceptBounds) |
| 372 | { | ||
| 373 | // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. | ||
| 374 | 3 | vmIsTrailingZeros = mmShift == 1; | |
| 375 | } | ||
| 376 | else | ||
| 377 | { | ||
| 378 | // mp = mv + 2, so it always has at least one trailing 0 bit. | ||
| 379 | ✗ | --vp; | |
| 380 | } | ||
| 381 | } | ||
| 382 |
2/2✓ Branch 0 taken 96 times.
✓ Branch 1 taken 35 times.
|
131 | else if (q < 63) |
| 383 | { | ||
| 384 | // TODO(ulfjack): Use a tighter bound here. | ||
| 385 | // We want to know if the full product has at least q trailing zeros. | ||
| 386 | // We need to compute min(p2(mv), p5(mv) - e2) >= q | ||
| 387 | // <=> p2(mv) >= q && p5(mv) - e2 >= q | ||
| 388 | // <=> p2(mv) >= q (because -e2 >= q) | ||
| 389 | 96 | vrIsTrailingZeros = multipleOfPowerOf2(mv, q); | |
| 390 | #ifdef RYU_DEBUG | ||
| 391 | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); | ||
| 392 | #endif | ||
| 393 | } | ||
| 394 | } | ||
| 395 | #ifdef RYU_DEBUG | ||
| 396 | printf("e10=%d\n", e10); | ||
| 397 | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); | ||
| 398 | printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false"); | ||
| 399 | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); | ||
| 400 | #endif | ||
| 401 | |||
| 402 | // Step 4: Find the shortest decimal representation in the interval of valid representations. | ||
| 403 | 262 | std::int32_t removed = 0; | |
| 404 | 262 | std::uint8_t lastRemovedDigit = 0; | |
| 405 | std::uint64_t output; | ||
| 406 | // On average, we remove ~2 digits. | ||
| 407 |
4/4✓ Branch 0 taken 3 times.
✓ Branch 1 taken 259 times.
✓ Branch 2 taken 91 times.
✓ Branch 3 taken 168 times.
|
262 | if (vmIsTrailingZeros || vrIsTrailingZeros) |
| 408 | { | ||
| 409 | // General case, which happens rarely (~0.7%). | ||
| 410 | for (;;) | ||
| 411 | { | ||
| 412 | 1663 | const std::uint64_t vpDiv10 = div10(vp); | |
| 413 | 1663 | const std::uint64_t vmDiv10 = div10(vm); | |
| 414 |
2/2✓ Branch 0 taken 94 times.
✓ Branch 1 taken 1569 times.
|
1663 | if (vpDiv10 <= vmDiv10) |
| 415 | 94 | break; | |
| 416 | 1569 | const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10); | |
| 417 | 1569 | const std::uint64_t vrDiv10 = div10(vr); | |
| 418 | 1569 | const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10); | |
| 419 | 1569 | vmIsTrailingZeros &= vmMod10 == 0; | |
| 420 | 1569 | vrIsTrailingZeros &= lastRemovedDigit == 0; | |
| 421 | 1569 | lastRemovedDigit = (uint8_t)vrMod10; | |
| 422 | 1569 | vr = vrDiv10; | |
| 423 | 1569 | vp = vpDiv10; | |
| 424 | 1569 | vm = vmDiv10; | |
| 425 | 1569 | ++removed; | |
| 426 | 1569 | } | |
| 427 | #ifdef RYU_DEBUG | ||
| 428 | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); | ||
| 429 | printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false"); | ||
| 430 | #endif | ||
| 431 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 92 times.
|
94 | if (vmIsTrailingZeros) |
| 432 | { | ||
| 433 | for (;;) | ||
| 434 | { | ||
| 435 | 3 | const std::uint64_t vmDiv10 = div10(vm); | |
| 436 | 3 | const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10); | |
| 437 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
|
3 | if (vmMod10 != 0) |
| 438 | 2 | break; | |
| 439 | 1 | const std::uint64_t vpDiv10 = div10(vp); | |
| 440 | 1 | const std::uint64_t vrDiv10 = div10(vr); | |
| 441 | 1 | const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10); | |
| 442 | 1 | vrIsTrailingZeros &= lastRemovedDigit == 0; | |
| 443 | 1 | lastRemovedDigit = (uint8_t)vrMod10; | |
| 444 | 1 | vr = vrDiv10; | |
| 445 | 1 | vp = vpDiv10; | |
| 446 | 1 | vm = vmDiv10; | |
| 447 | 1 | ++removed; | |
| 448 | 1 | } | |
| 449 | } | ||
| 450 | #ifdef RYU_DEBUG | ||
| 451 | printf("%" PRIu64 " %d\n", vr, lastRemovedDigit); | ||
| 452 | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); | ||
| 453 | #endif | ||
| 454 |
5/6✓ Branch 0 taken 91 times.
✓ Branch 1 taken 3 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 90 times.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
|
94 | if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) |
| 455 | { | ||
| 456 | // Round even if the exact number is .....50..0. | ||
| 457 | 1 | lastRemovedDigit = 4; | |
| 458 | } | ||
| 459 | // We need to take vr + 1 if vr is outside bounds or we need to round up. | ||
| 460 |
5/8✓ Branch 0 taken 1 times.
✓ Branch 1 taken 93 times.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 94 times.
|
94 | output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); |
| 461 | 94 | } | |
| 462 | else | ||
| 463 | { | ||
| 464 | // Specialized for the common case (~99.3%). Percentages below are relative to this. | ||
| 465 | 168 | bool roundUp = false; | |
| 466 | 168 | const std::uint64_t vpDiv100 = div100(vp); | |
| 467 | 168 | const std::uint64_t vmDiv100 = div100(vm); | |
| 468 |
2/2✓ Branch 0 taken 161 times.
✓ Branch 1 taken 7 times.
|
168 | if (vpDiv100 > vmDiv100) |
| 469 | { | ||
| 470 | // Optimization: remove two digits at a time (~86.2%). | ||
| 471 | 161 | const std::uint64_t vrDiv100 = div100(vr); | |
| 472 | 161 | const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100); | |
| 473 | 161 | roundUp = vrMod100 >= 50; | |
| 474 | 161 | vr = vrDiv100; | |
| 475 | 161 | vp = vpDiv100; | |
| 476 | 161 | vm = vmDiv100; | |
| 477 | 161 | removed += 2; | |
| 478 | } | ||
| 479 | // Loop iterations below (approximately), without optimization above: | ||
| 480 | // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% | ||
| 481 | // Loop iterations below (approximately), with optimization above: | ||
| 482 | // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% | ||
| 483 | for (;;) | ||
| 484 | { | ||
| 485 | 2256 | const std::uint64_t vpDiv10 = div10(vp); | |
| 486 | 2256 | const std::uint64_t vmDiv10 = div10(vm); | |
| 487 |
2/2✓ Branch 0 taken 168 times.
✓ Branch 1 taken 2088 times.
|
2256 | if (vpDiv10 <= vmDiv10) |
| 488 | 168 | break; | |
| 489 | 2088 | const std::uint64_t vrDiv10 = div10(vr); | |
| 490 | 2088 | const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10); | |
| 491 | 2088 | roundUp = vrMod10 >= 5; | |
| 492 | 2088 | vr = vrDiv10; | |
| 493 | 2088 | vp = vpDiv10; | |
| 494 | 2088 | vm = vmDiv10; | |
| 495 | 2088 | ++removed; | |
| 496 | 2088 | } | |
| 497 | #ifdef RYU_DEBUG | ||
| 498 | printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false"); | ||
| 499 | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); | ||
| 500 | #endif | ||
| 501 | // We need to take vr + 1 if vr is outside bounds or we need to round up. | ||
| 502 |
4/4✓ Branch 0 taken 119 times.
✓ Branch 1 taken 49 times.
✓ Branch 2 taken 6 times.
✓ Branch 3 taken 113 times.
|
168 | output = vr + (vr == vm || roundUp); |
| 503 | } | ||
| 504 | 262 | const std::int32_t exp = e10 + removed; | |
| 505 | |||
| 506 | #ifdef RYU_DEBUG | ||
| 507 | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); | ||
| 508 | printf("O=%" PRIu64 "\n", output); | ||
| 509 | printf("EXP=%d\n", exp); | ||
| 510 | #endif | ||
| 511 | |||
| 512 | floating_decimal_64 fd; | ||
| 513 | 262 | fd.exponent = exp; | |
| 514 | 262 | fd.mantissa = output; | |
| 515 | 262 | return fd; | |
| 516 | } | ||
| 517 | |||
| 518 | inline | ||
| 519 | int | ||
| 520 | 538 | to_chars( | |
| 521 | const floating_decimal_64 v, | ||
| 522 | const bool sign, | ||
| 523 | char* const result) | ||
| 524 | { | ||
| 525 | // Step 5: Print the decimal representation. | ||
| 526 | 538 | int index = 0; | |
| 527 |
2/2✓ Branch 0 taken 129 times.
✓ Branch 1 taken 409 times.
|
538 | if (sign) |
| 528 | 129 | result[index++] = '-'; | |
| 529 | |||
| 530 | 538 | std::uint64_t output = v.mantissa; | |
| 531 | 538 | std::uint32_t const olength = decimalLength17(output); | |
| 532 | |||
| 533 | #ifdef RYU_DEBUG | ||
| 534 | printf("DIGITS=%" PRIu64 "\n", v.mantissa); | ||
| 535 | printf("OLEN=%u\n", olength); | ||
| 536 | printf("EXP=%u\n", v.exponent + olength); | ||
| 537 | #endif | ||
| 538 | |||
| 539 | // Print the decimal digits. | ||
| 540 | // The following code is equivalent to: | ||
| 541 | // for (uint32_t i = 0; i < olength - 1; ++i) { | ||
| 542 | // const uint32_t c = output % 10; output /= 10; | ||
| 543 | // result[index + olength - i] = (char) ('0' + c); | ||
| 544 | // } | ||
| 545 | // result[index] = '0' + output % 10; | ||
| 546 | |||
| 547 | 538 | std::uint32_t i = 0; | |
| 548 | // We prefer 32-bit operations, even on 64-bit platforms. | ||
| 549 | // We have at most 17 digits, and uint32_t can store 9 digits. | ||
| 550 | // If output doesn't fit into uint32_t, we cut off 8 digits, | ||
| 551 | // so the rest will fit into uint32_t. | ||
| 552 |
2/2✓ Branch 0 taken 59 times.
✓ Branch 1 taken 479 times.
|
538 | if ((output >> 32) != 0) |
| 553 | { | ||
| 554 | // Expensive 64-bit division. | ||
| 555 | 59 | std::uint64_t const q = div1e8(output); | |
| 556 | 59 | std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q); | |
| 557 | 59 | output = q; | |
| 558 | |||
| 559 | 59 | const std::uint32_t c = output2 % 10000; | |
| 560 | 59 | output2 /= 10000; | |
| 561 | 59 | const std::uint32_t d = output2 % 10000; | |
| 562 | 59 | const std::uint32_t c0 = (c % 100) << 1; | |
| 563 | 59 | const std::uint32_t c1 = (c / 100) << 1; | |
| 564 | 59 | const std::uint32_t d0 = (d % 100) << 1; | |
| 565 | 59 | const std::uint32_t d1 = (d / 100) << 1; | |
| 566 | 59 | std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2); | |
| 567 | 59 | std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2); | |
| 568 | 59 | std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2); | |
| 569 | 59 | std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2); | |
| 570 | 59 | i += 8; | |
| 571 | } | ||
| 572 | 538 | uint32_t output2 = (std::uint32_t)output; | |
| 573 |
2/2✓ Branch 0 taken 100 times.
✓ Branch 1 taken 538 times.
|
638 | while (output2 >= 10000) |
| 574 | { | ||
| 575 | #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 | ||
| 576 | const uint32_t c = output2 - 10000 * (output2 / 10000); | ||
| 577 | #else | ||
| 578 | 100 | const uint32_t c = output2 % 10000; | |
| 579 | #endif | ||
| 580 | 100 | output2 /= 10000; | |
| 581 | 100 | const uint32_t c0 = (c % 100) << 1; | |
| 582 | 100 | const uint32_t c1 = (c / 100) << 1; | |
| 583 | 100 | memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2); | |
| 584 | 100 | memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2); | |
| 585 | 100 | i += 4; | |
| 586 | } | ||
| 587 |
2/2✓ Branch 0 taken 69 times.
✓ Branch 1 taken 469 times.
|
538 | if (output2 >= 100) { |
| 588 | 69 | const uint32_t c = (output2 % 100) << 1; | |
| 589 | 69 | output2 /= 100; | |
| 590 | 69 | memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2); | |
| 591 | 69 | i += 2; | |
| 592 | } | ||
| 593 |
2/2✓ Branch 0 taken 62 times.
✓ Branch 1 taken 476 times.
|
538 | if (output2 >= 10) { |
| 594 | 62 | const uint32_t c = output2 << 1; | |
| 595 | // We can't use memcpy here: the decimal dot goes between these two digits. | ||
| 596 | 62 | result[index + olength - i] = DIGIT_TABLE()[c + 1]; | |
| 597 | 62 | result[index] = DIGIT_TABLE()[c]; | |
| 598 | } | ||
| 599 | else { | ||
| 600 | 476 | result[index] = (char)('0' + output2); | |
| 601 | } | ||
| 602 | |||
| 603 | // Print decimal point if needed. | ||
| 604 |
2/2✓ Branch 0 taken 123 times.
✓ Branch 1 taken 415 times.
|
538 | if (olength > 1) { |
| 605 | 123 | result[index + 1] = '.'; | |
| 606 | 123 | index += olength + 1; | |
| 607 | } | ||
| 608 | else { | ||
| 609 | 415 | ++index; | |
| 610 | } | ||
| 611 | |||
| 612 | // Print the exponent. | ||
| 613 | 538 | result[index++] = 'E'; | |
| 614 | 538 | int32_t exp = v.exponent + (int32_t)olength - 1; | |
| 615 |
2/2✓ Branch 0 taken 92 times.
✓ Branch 1 taken 446 times.
|
538 | if (exp < 0) { |
| 616 | 92 | result[index++] = '-'; | |
| 617 | 92 | exp = -exp; | |
| 618 | } | ||
| 619 | |||
| 620 |
2/2✓ Branch 0 taken 33 times.
✓ Branch 1 taken 505 times.
|
538 | if (exp >= 100) { |
| 621 | 33 | const int32_t c = exp % 10; | |
| 622 | 33 | memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2); | |
| 623 | 33 | result[index + 2] = (char)('0' + c); | |
| 624 | 33 | index += 3; | |
| 625 | } | ||
| 626 |
2/2✓ Branch 0 taken 180 times.
✓ Branch 1 taken 325 times.
|
505 | else if (exp >= 10) { |
| 627 | 180 | memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2); | |
| 628 | 180 | index += 2; | |
| 629 | } | ||
| 630 | else { | ||
| 631 | 325 | result[index++] = (char)('0' + exp); | |
| 632 | } | ||
| 633 | |||
| 634 | 538 | return index; | |
| 635 | } | ||
| 636 | |||
| 637 | 538 | static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, | |
| 638 | floating_decimal_64* const v) { | ||
| 639 | 538 | const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; | |
| 640 | 538 | const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; | |
| 641 | |||
| 642 |
2/2✓ Branch 0 taken 131 times.
✓ Branch 1 taken 407 times.
|
538 | if (e2 > 0) { |
| 643 | // f = m2 * 2^e2 >= 2^53 is an integer. | ||
| 644 | // Ignore this case for now. | ||
| 645 | 131 | return false; | |
| 646 | } | ||
| 647 | |||
| 648 |
2/2✓ Branch 0 taken 92 times.
✓ Branch 1 taken 315 times.
|
407 | if (e2 < -52) { |
| 649 | // f < 1. | ||
| 650 | 92 | return false; | |
| 651 | } | ||
| 652 | |||
| 653 | // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53. | ||
| 654 | // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0. | ||
| 655 | 315 | const uint64_t mask = (1ull << -e2) - 1; | |
| 656 | 315 | const uint64_t fraction = m2 & mask; | |
| 657 |
2/2✓ Branch 0 taken 39 times.
✓ Branch 1 taken 276 times.
|
315 | if (fraction != 0) { |
| 658 | 39 | return false; | |
| 659 | } | ||
| 660 | |||
| 661 | // f is an integer in the range [1, 2^53). | ||
| 662 | // Note: mantissa might contain trailing (decimal) 0's. | ||
| 663 | // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17(). | ||
| 664 | 276 | v->mantissa = m2 >> -e2; | |
| 665 | 276 | v->exponent = 0; | |
| 666 | 276 | return true; | |
| 667 | } | ||
| 668 | |||
| 669 | } // detail | ||
| 670 | |||
| 671 | int | ||
| 672 | 609 | d2s_buffered_n( | |
| 673 | double f, | ||
| 674 | char* result, | ||
| 675 | bool allow_infinity_and_nan) noexcept | ||
| 676 | { | ||
| 677 | using namespace detail; | ||
| 678 | // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. | ||
| 679 | 609 | std::uint64_t const bits = double_to_bits(f); | |
| 680 | |||
| 681 | #ifdef RYU_DEBUG | ||
| 682 | printf("IN="); | ||
| 683 | for (std::int32_t bit = 63; bit >= 0; --bit) { | ||
| 684 | printf("%d", (int)((bits >> bit) & 1)); | ||
| 685 | } | ||
| 686 | printf("\n"); | ||
| 687 | #endif | ||
| 688 | |||
| 689 | // Decode bits into sign, mantissa, and exponent. | ||
| 690 | 609 | const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; | |
| 691 | 609 | const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1); | |
| 692 | 609 | const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); | |
| 693 | // Case distinction; exit early for the easy cases. | ||
| 694 |
6/6✓ Branch 0 taken 591 times.
✓ Branch 1 taken 18 times.
✓ Branch 2 taken 68 times.
✓ Branch 3 taken 523 times.
✓ Branch 4 taken 53 times.
✓ Branch 5 taken 15 times.
|
609 | if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) { |
| 695 | // We changed how special numbers are output by default | ||
| 696 |
2/2✓ Branch 0 taken 11 times.
✓ Branch 1 taken 60 times.
|
71 | if (allow_infinity_and_nan) |
| 697 | 11 | return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0); | |
| 698 | else | ||
| 699 | 60 | return copy_special_str_conforming(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0); | |
| 700 | |||
| 701 | } | ||
| 702 | |||
| 703 | floating_decimal_64 v; | ||
| 704 | 538 | const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v); | |
| 705 |
2/2✓ Branch 0 taken 276 times.
✓ Branch 1 taken 262 times.
|
538 | if (isSmallInt) { |
| 706 | // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros. | ||
| 707 | // For scientific notation we need to move these zeros into the exponent. | ||
| 708 | // (This is not needed for fixed-point notation, so it might be beneficial to trim | ||
| 709 | // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.) | ||
| 710 | for (;;) { | ||
| 711 | 698 | std::uint64_t const q = div10(v.mantissa); | |
| 712 | 698 | std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q); | |
| 713 |
2/2✓ Branch 0 taken 276 times.
✓ Branch 1 taken 422 times.
|
698 | if (r != 0) |
| 714 | 276 | break; | |
| 715 | 422 | v.mantissa = q; | |
| 716 | 422 | ++v.exponent; | |
| 717 | 422 | } | |
| 718 | } | ||
| 719 | else { | ||
| 720 | 262 | v = d2d(ieeeMantissa, ieeeExponent); | |
| 721 | } | ||
| 722 | |||
| 723 | 538 | return to_chars(v, ieeeSign, result); | |
| 724 | } | ||
| 725 | |||
| 726 | } // ryu | ||
| 727 | |||
| 728 | } // detail | ||
| 729 | } // namespace json | ||
| 730 | } // namespace boost | ||
| 731 | |||
| 732 | #endif | ||
| 733 |