GCC Code Coverage Report


Directory: libs/json/include/boost/json/
File: detail/charconv/detail/compute_float64.hpp
Date: 2025-12-23 17:20:53
Exec Total Coverage
Lines: 0 53 0.0%
Functions: 0 1 0.0%
Branches: 0 44 0.0%

Line Branch Exec Source
1 // Copyright 2020-2023 Daniel Lemire
2 // Copyright 2023 Matt Borland
3 // Distributed under the Boost Software License, Version 1.0.
4 // https://www.boost.org/LICENSE_1_0.txt
5
6 #ifndef BOOST_JSON_DETAIL_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP
7 #define BOOST_JSON_DETAIL_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP
8
9 #include <boost/json/detail/charconv/detail/config.hpp>
10 #include <boost/json/detail/charconv/detail/significand_tables.hpp>
11 #include <boost/json/detail/charconv/detail/emulated128.hpp>
12 #include <boost/core/bit.hpp>
13 #include <cstdint>
14 #include <cfloat>
15 #include <cstring>
16 #include <cmath>
17
18 namespace boost { namespace json { namespace detail { namespace charconv { namespace detail {
19
20 static constexpr double powers_of_ten[] = {
21 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
22 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22
23 };
24
25 // Attempts to compute i * 10^(power) exactly; and if "negative" is true, negate the result.
26 //
27 // This function will only work in some cases, when it does not work, success is
28 // set to false. This should work *most of the time* (like 99% of the time).
29 // We assume that power is in the [-325, 308] interval.
30 inline double compute_float64(std::int64_t power, std::uint64_t i, bool negative, bool& success) noexcept
31 {
32 static constexpr auto smallest_power = -325;
33 static constexpr auto largest_power = 308;
34
35 // We start with a fast path
36 // It was described in Clinger WD.
37 // How to read floating point numbers accurately.
38 // ACM SIGPLAN Notices. 1990
39 #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
40 if (0 <= power && power <= 22 && i <= UINT64_C(9007199254740991))
41 #else
42 if (-22 <= power && power <= 22 && i <= UINT64_C(9007199254740991))
43 #endif
44 {
45 // The general idea is as follows.
46 // If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
47 // 1) Both s and p can be represented exactly as 64-bit floating-point
48 // values
49 // (binary64).
50 // 2) Because s and p can be represented exactly as floating-point values,
51 // then s * p
52 // and s / p will produce correctly rounded values.
53
54 auto d = static_cast<double>(i);
55
56 if (power < 0)
57 {
58 d = d / powers_of_ten[-power];
59 }
60 else
61 {
62 d = d * powers_of_ten[power];
63 }
64
65 if (negative)
66 {
67 d = -d;
68 }
69
70 success = true;
71 return d;
72 }
73
74 // When 22 < power && power < 22 + 16, we could
75 // hope for another, secondary fast path. It was
76 // described by David M. Gay in "Correctly rounded
77 // binary-decimal and decimal-binary conversions." (1990)
78 // If you need to compute i * 10^(22 + x) for x < 16,
79 // first compute i * 10^x, if you know that result is exact
80 // (e.g., when i * 10^x < 2^53),
81 // then you can still proceed and do (i * 10^x) * 10^22.
82 // Is this worth your time?
83 // You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
84 // for this second fast path to work.
85 // If you have 22 < power *and* power < 22 + 16, and then you
86 // optimistically compute "i * 10^(x-22)", there is still a chance that you
87 // have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
88 // this optimization maybe less common than we would like. Source:
89 // http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
90 // also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
91
92 if (i == 0 || power < smallest_power)
93 {
94 return negative ? -0.0 : 0.0;
95 }
96 else if (power > largest_power)
97 {
98 return negative ? -HUGE_VAL : HUGE_VAL;
99 }
100
101 const std::uint64_t factor_significand = significand_64[power - smallest_power];
102 const std::int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63;
103 int leading_zeros = boost::core::countl_zero(i);
104 i <<= static_cast<std::uint64_t>(leading_zeros);
105
106 uint128 product = umul128(i, factor_significand);
107 std::uint64_t low = product.low;
108 std::uint64_t high = product.high;
109
110 // We know that upper has at most one leading zero because
111 // both i and factor_mantissa have a leading one. This means
112 // that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
113 //
114 // As long as the first 9 bits of "upper" are not "1", then we
115 // know that we have an exact computed value for the leading
116 // 55 bits because any imprecision would play out as a +1, in the worst case.
117 // Having 55 bits is necessary because we need 53 bits for the mantissa,
118 // but we have to have one rounding bit and, we can waste a bit if the most
119 // significant bit of the product is zero.
120 //
121 // We expect this next branch to be rarely taken (say 1% of the time).
122 // When (upper & 0x1FF) == 0x1FF, it can be common for
123 // lower + i < lower to be true (proba. much higher than 1%).
124 if (BOOST_UNLIKELY((high & 0x1FF) == 0x1FF) && (low + i < low))
125 {
126 const std::uint64_t factor_significand_low = significand_128[power - smallest_power];
127 product = umul128(i, factor_significand_low);
128 //const std::uint64_t product_low = product.low;
129 const std::uint64_t product_middle2 = product.high;
130 const std::uint64_t product_middle1 = low;
131 std::uint64_t product_high = high;
132 const std::uint64_t product_middle = product_middle1 + product_middle2;
133
134 if (product_middle < product_middle1)
135 {
136 product_high++;
137 }
138
139 // Commented out because possibly unneeded
140 // See: https://arxiv.org/pdf/2212.06644.pdf
141 /*
142 // we want to check whether mantissa *i + i would affect our result
143 // This does happen, e.g. with 7.3177701707893310e+15
144 if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) && (product_low + i < product_low)))
145 {
146 success = false;
147 return 0;
148 }
149 */
150
151 low = product_middle;
152 high = product_high;
153 }
154
155 // The final significand should be 53 bits with a leading 1
156 // We shift it so that it occupies 54 bits with a leading 1
157 const std::uint64_t upper_bit = high >> 63;
158 std::uint64_t significand = high >> (upper_bit + 9);
159 leading_zeros += static_cast<int>(1 ^ upper_bit);
160
161 // If we have lots of trailing zeros we may fall between two values
162 if (BOOST_UNLIKELY((low == 0) && ((high & 0x1FF) == 0) && ((significand & 3) == 1)))
163 {
164 // if significand & 1 == 1 we might need to round up
165 success = false;
166 return 0;
167 }
168
169 significand += significand & 1;
170 significand >>= 1;
171
172 // Here the significand < (1<<53), unless there is an overflow
173 if (significand >= (UINT64_C(1) << 53))
174 {
175 significand = (UINT64_C(1) << 52);
176 leading_zeros--;
177 }
178
179 significand &= ~(UINT64_C(1) << 52);
180 const std::uint64_t real_exponent = exponent - leading_zeros;
181
182 // We have to check that real_exponent is in range, otherwise fail
183 if (BOOST_UNLIKELY((real_exponent < 1) || (real_exponent > 2046)))
184 {
185 success = false;
186 return 0;
187 }
188
189 significand |= real_exponent << 52;
190 significand |= ((static_cast<std::uint64_t>(negative) << 63));
191
192 double d;
193 std::memcpy(&d, &significand, sizeof(d));
194
195 success = true;
196 return d;
197 }
198
199 }}}}} // Namespaces
200
201 #endif // BOOST_JSON_DETAIL_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP
202